Optimal Margin Computation for At-Speed Test

In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jinjun Xiong, Zolotov, V., Visweswariah, C., Habitz, P.A.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue
container_start_page 622
container_title
container_volume
creator Jinjun Xiong
Zolotov, V.
Visweswariah, C.
Habitz, P.A.
description In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.
doi_str_mv 10.1109/DATE.2008.4484746
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4484746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4484746</ieee_id><sourcerecordid>4484746</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-186d79f8e1d130dbb7c30b5dff14b41b7fc1940a231c592c96ddce0389c8b7443</originalsourceid><addsrcrecordid>eNpFj7tOwzAYhc1Noi08AGLJA-Dw_7Ed22MUCq1U1IEwV_ENGbVNlJiBtyeISkxn-I7OhZA7hBwR9ONT1SzzAkDlnCsueXlG5kwrBAXI9TmZoRCKTla8-AcMLn8BA4pC4zWZj-MnAAhW6Bl52PYpHtp99toOH_GY1d2h_0ptit0xC92QVYm-9d67rPFjuiFXod2P_vakC_L-vGzqFd1sX9Z1taERRZkoqtJJHZRHN5U7Y6RlYIQLAbnhaGSwqDm0BUMrdGF16Zz1wJS2ykjO2YLc_-VG7_2uH6aBw_fudJn9AHixRN8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Margin Computation for At-Speed Test</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jinjun Xiong ; Zolotov, V. ; Visweswariah, C. ; Habitz, P.A.</creator><creatorcontrib>Jinjun Xiong ; Zolotov, V. ; Visweswariah, C. ; Habitz, P.A.</creatorcontrib><description>In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.</description><identifier>ISSN: 1530-1591</identifier><identifier>ISBN: 3981080130</identifier><identifier>ISBN: 9783981080131</identifier><identifier>EISSN: 1558-1101</identifier><identifier>EISBN: 3981080149</identifier><identifier>EISBN: 9783981080148</identifier><identifier>DOI: 10.1109/DATE.2008.4484746</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Aging ; Circuit testing ; Delay ; Face detection ; Frequency ; Manufacturing processes ; Semiconductor device modeling ; Temperature ; Timing ; Voltage</subject><ispartof>2008 Design, Automation and Test in Europe, 2008, p.622-627</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4484746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4484746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinjun Xiong</creatorcontrib><creatorcontrib>Zolotov, V.</creatorcontrib><creatorcontrib>Visweswariah, C.</creatorcontrib><creatorcontrib>Habitz, P.A.</creatorcontrib><title>Optimal Margin Computation for At-Speed Test</title><title>2008 Design, Automation and Test in Europe</title><addtitle>DATE</addtitle><description>In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.</description><subject>Aging</subject><subject>Circuit testing</subject><subject>Delay</subject><subject>Face detection</subject><subject>Frequency</subject><subject>Manufacturing processes</subject><subject>Semiconductor device modeling</subject><subject>Temperature</subject><subject>Timing</subject><subject>Voltage</subject><issn>1530-1591</issn><issn>1558-1101</issn><isbn>3981080130</isbn><isbn>9783981080131</isbn><isbn>3981080149</isbn><isbn>9783981080148</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj7tOwzAYhc1Noi08AGLJA-Dw_7Ed22MUCq1U1IEwV_ENGbVNlJiBtyeISkxn-I7OhZA7hBwR9ONT1SzzAkDlnCsueXlG5kwrBAXI9TmZoRCKTla8-AcMLn8BA4pC4zWZj-MnAAhW6Bl52PYpHtp99toOH_GY1d2h_0ptit0xC92QVYm-9d67rPFjuiFXod2P_vakC_L-vGzqFd1sX9Z1taERRZkoqtJJHZRHN5U7Y6RlYIQLAbnhaGSwqDm0BUMrdGF16Zz1wJS2ykjO2YLc_-VG7_2uH6aBw_fudJn9AHixRN8</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Jinjun Xiong</creator><creator>Zolotov, V.</creator><creator>Visweswariah, C.</creator><creator>Habitz, P.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200803</creationdate><title>Optimal Margin Computation for At-Speed Test</title><author>Jinjun Xiong ; Zolotov, V. ; Visweswariah, C. ; Habitz, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-186d79f8e1d130dbb7c30b5dff14b41b7fc1940a231c592c96ddce0389c8b7443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2008</creationdate><topic>Aging</topic><topic>Circuit testing</topic><topic>Delay</topic><topic>Face detection</topic><topic>Frequency</topic><topic>Manufacturing processes</topic><topic>Semiconductor device modeling</topic><topic>Temperature</topic><topic>Timing</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Jinjun Xiong</creatorcontrib><creatorcontrib>Zolotov, V.</creatorcontrib><creatorcontrib>Visweswariah, C.</creatorcontrib><creatorcontrib>Habitz, P.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinjun Xiong</au><au>Zolotov, V.</au><au>Visweswariah, C.</au><au>Habitz, P.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Margin Computation for At-Speed Test</atitle><btitle>2008 Design, Automation and Test in Europe</btitle><stitle>DATE</stitle><date>2008-03</date><risdate>2008</risdate><spage>622</spage><epage>627</epage><pages>622-627</pages><issn>1530-1591</issn><eissn>1558-1101</eissn><isbn>3981080130</isbn><isbn>9783981080131</isbn><eisbn>3981080149</eisbn><eisbn>9783981080148</eisbn><abstract>In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.</abstract><pub>IEEE</pub><doi>10.1109/DATE.2008.4484746</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1591
ispartof 2008 Design, Automation and Test in Europe, 2008, p.622-627
issn 1530-1591
1558-1101
language eng ; jpn
recordid cdi_ieee_primary_4484746
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aging
Circuit testing
Delay
Face detection
Frequency
Manufacturing processes
Semiconductor device modeling
Temperature
Timing
Voltage
title Optimal Margin Computation for At-Speed Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Margin%20Computation%20for%20At-Speed%20Test&rft.btitle=2008%20Design,%20Automation%20and%20Test%20in%20Europe&rft.au=Jinjun%20Xiong&rft.date=2008-03&rft.spage=622&rft.epage=627&rft.pages=622-627&rft.issn=1530-1591&rft.eissn=1558-1101&rft.isbn=3981080130&rft.isbn_list=9783981080131&rft_id=info:doi/10.1109/DATE.2008.4484746&rft_dat=%3Cieee_6IE%3E4484746%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=3981080149&rft.eisbn_list=9783981080148&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4484746&rfr_iscdi=true