Optimal Margin Computation for At-Speed Test
In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test ma...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | |
container_start_page | 622 |
container_title | |
container_volume | |
creator | Jinjun Xiong Zolotov, V. Visweswariah, C. Habitz, P.A. |
description | In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield. |
doi_str_mv | 10.1109/DATE.2008.4484746 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4484746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4484746</ieee_id><sourcerecordid>4484746</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-186d79f8e1d130dbb7c30b5dff14b41b7fc1940a231c592c96ddce0389c8b7443</originalsourceid><addsrcrecordid>eNpFj7tOwzAYhc1Noi08AGLJA-Dw_7Ed22MUCq1U1IEwV_ENGbVNlJiBtyeISkxn-I7OhZA7hBwR9ONT1SzzAkDlnCsueXlG5kwrBAXI9TmZoRCKTla8-AcMLn8BA4pC4zWZj-MnAAhW6Bl52PYpHtp99toOH_GY1d2h_0ptit0xC92QVYm-9d67rPFjuiFXod2P_vakC_L-vGzqFd1sX9Z1taERRZkoqtJJHZRHN5U7Y6RlYIQLAbnhaGSwqDm0BUMrdGF16Zz1wJS2ykjO2YLc_-VG7_2uH6aBw_fudJn9AHixRN8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Margin Computation for At-Speed Test</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jinjun Xiong ; Zolotov, V. ; Visweswariah, C. ; Habitz, P.A.</creator><creatorcontrib>Jinjun Xiong ; Zolotov, V. ; Visweswariah, C. ; Habitz, P.A.</creatorcontrib><description>In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.</description><identifier>ISSN: 1530-1591</identifier><identifier>ISBN: 3981080130</identifier><identifier>ISBN: 9783981080131</identifier><identifier>EISSN: 1558-1101</identifier><identifier>EISBN: 3981080149</identifier><identifier>EISBN: 9783981080148</identifier><identifier>DOI: 10.1109/DATE.2008.4484746</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Aging ; Circuit testing ; Delay ; Face detection ; Frequency ; Manufacturing processes ; Semiconductor device modeling ; Temperature ; Timing ; Voltage</subject><ispartof>2008 Design, Automation and Test in Europe, 2008, p.622-627</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4484746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4484746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinjun Xiong</creatorcontrib><creatorcontrib>Zolotov, V.</creatorcontrib><creatorcontrib>Visweswariah, C.</creatorcontrib><creatorcontrib>Habitz, P.A.</creatorcontrib><title>Optimal Margin Computation for At-Speed Test</title><title>2008 Design, Automation and Test in Europe</title><addtitle>DATE</addtitle><description>In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.</description><subject>Aging</subject><subject>Circuit testing</subject><subject>Delay</subject><subject>Face detection</subject><subject>Frequency</subject><subject>Manufacturing processes</subject><subject>Semiconductor device modeling</subject><subject>Temperature</subject><subject>Timing</subject><subject>Voltage</subject><issn>1530-1591</issn><issn>1558-1101</issn><isbn>3981080130</isbn><isbn>9783981080131</isbn><isbn>3981080149</isbn><isbn>9783981080148</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj7tOwzAYhc1Noi08AGLJA-Dw_7Ed22MUCq1U1IEwV_ENGbVNlJiBtyeISkxn-I7OhZA7hBwR9ONT1SzzAkDlnCsueXlG5kwrBAXI9TmZoRCKTla8-AcMLn8BA4pC4zWZj-MnAAhW6Bl52PYpHtp99toOH_GY1d2h_0ptit0xC92QVYm-9d67rPFjuiFXod2P_vakC_L-vGzqFd1sX9Z1taERRZkoqtJJHZRHN5U7Y6RlYIQLAbnhaGSwqDm0BUMrdGF16Zz1wJS2ykjO2YLc_-VG7_2uH6aBw_fudJn9AHixRN8</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Jinjun Xiong</creator><creator>Zolotov, V.</creator><creator>Visweswariah, C.</creator><creator>Habitz, P.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200803</creationdate><title>Optimal Margin Computation for At-Speed Test</title><author>Jinjun Xiong ; Zolotov, V. ; Visweswariah, C. ; Habitz, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-186d79f8e1d130dbb7c30b5dff14b41b7fc1940a231c592c96ddce0389c8b7443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2008</creationdate><topic>Aging</topic><topic>Circuit testing</topic><topic>Delay</topic><topic>Face detection</topic><topic>Frequency</topic><topic>Manufacturing processes</topic><topic>Semiconductor device modeling</topic><topic>Temperature</topic><topic>Timing</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Jinjun Xiong</creatorcontrib><creatorcontrib>Zolotov, V.</creatorcontrib><creatorcontrib>Visweswariah, C.</creatorcontrib><creatorcontrib>Habitz, P.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinjun Xiong</au><au>Zolotov, V.</au><au>Visweswariah, C.</au><au>Habitz, P.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Margin Computation for At-Speed Test</atitle><btitle>2008 Design, Automation and Test in Europe</btitle><stitle>DATE</stitle><date>2008-03</date><risdate>2008</risdate><spage>622</spage><epage>627</epage><pages>622-627</pages><issn>1530-1591</issn><eissn>1558-1101</eissn><isbn>3981080130</isbn><isbn>9783981080131</isbn><eisbn>3981080149</eisbn><eisbn>9783981080148</eisbn><abstract>In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss (SPQL) limit. If process information is available from wafer testing of scribe line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per- chip test margin which can further improve yield.</abstract><pub>IEEE</pub><doi>10.1109/DATE.2008.4484746</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1591 |
ispartof | 2008 Design, Automation and Test in Europe, 2008, p.622-627 |
issn | 1530-1591 1558-1101 |
language | eng ; jpn |
recordid | cdi_ieee_primary_4484746 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aging Circuit testing Delay Face detection Frequency Manufacturing processes Semiconductor device modeling Temperature Timing Voltage |
title | Optimal Margin Computation for At-Speed Test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Margin%20Computation%20for%20At-Speed%20Test&rft.btitle=2008%20Design,%20Automation%20and%20Test%20in%20Europe&rft.au=Jinjun%20Xiong&rft.date=2008-03&rft.spage=622&rft.epage=627&rft.pages=622-627&rft.issn=1530-1591&rft.eissn=1558-1101&rft.isbn=3981080130&rft.isbn_list=9783981080131&rft_id=info:doi/10.1109/DATE.2008.4484746&rft_dat=%3Cieee_6IE%3E4484746%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=3981080149&rft.eisbn_list=9783981080148&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4484746&rfr_iscdi=true |