Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio
Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to sign...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 887 |
---|---|
container_issue | |
container_start_page | 883 |
container_title | |
container_volume | |
creator | Hao Hu Junde Song Yujing Wang |
description | Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers. |
doi_str_mv | 10.1109/AINA.2008.27 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4482799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4482799</ieee_id><sourcerecordid>4482799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-7feb0a45cdf03e477d74e1fa268d37a3ca12002f32c92be0d72d9ad9ca8c28cb3</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMfYKm9efOSP7D1zXdyXIvWQlVw_bqVt0m2RNbdslmE_ntX6mkGnpmBIeSKwZwxcDfl6qmccwA75-aETLgQvFBa2VMyc8aC0U4JcEqfkQlTCgop1ecFmeX8BQDMaausm5CPKu1abOiiwZxTnTwOqWvpLeYY6GiqffRD_xfo-j42R1qOjUNOmWIbaPX-SFM78l2bhvQT6QuG1F2S8xqbHGf_OiVv93evi4di_bxcLcp1kZjSQ2HquAWUyocaRJTGBCMjq5FrG4RB4ZGNF3ktuHd8GyEYHhwG59F6bv1WTMn1cTfFGDf7Pn1jf9hIablxTvwCrB5T0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Hu ; Junde Song ; Yujing Wang</creator><creatorcontrib>Hao Hu ; Junde Song ; Yujing Wang</creatorcontrib><description>Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.</description><identifier>ISSN: 1550-445X</identifier><identifier>ISBN: 9780769530956</identifier><identifier>ISBN: 0769530958</identifier><identifier>EISSN: 2332-5658</identifier><identifier>DOI: 10.1109/AINA.2008.27</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Adaptive signal detection ; Cognitive radio ; Computational complexity ; Frequency ; Pattern classification ; RF signals ; Signal analysis ; Spectral analysis ; Support vector machine classification ; Support vector machines</subject><ispartof>22nd International Conference on Advanced Information Networking and Applications (aina 2008), 2008, p.883-887</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4482799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4482799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Hu</creatorcontrib><creatorcontrib>Junde Song</creatorcontrib><creatorcontrib>Yujing Wang</creatorcontrib><title>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</title><title>22nd International Conference on Advanced Information Networking and Applications (aina 2008)</title><addtitle>AINA</addtitle><description>Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.</description><subject>Adaptive signal detection</subject><subject>Cognitive radio</subject><subject>Computational complexity</subject><subject>Frequency</subject><subject>Pattern classification</subject><subject>RF signals</subject><subject>Signal analysis</subject><subject>Spectral analysis</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>9780769530956</isbn><isbn>0769530958</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEYhIMfYKm9efOSP7D1zXdyXIvWQlVw_bqVt0m2RNbdslmE_ntX6mkGnpmBIeSKwZwxcDfl6qmccwA75-aETLgQvFBa2VMyc8aC0U4JcEqfkQlTCgop1ecFmeX8BQDMaausm5CPKu1abOiiwZxTnTwOqWvpLeYY6GiqffRD_xfo-j42R1qOjUNOmWIbaPX-SFM78l2bhvQT6QuG1F2S8xqbHGf_OiVv93evi4di_bxcLcp1kZjSQ2HquAWUyocaRJTGBCMjq5FrG4RB4ZGNF3ktuHd8GyEYHhwG59F6bv1WTMn1cTfFGDf7Pn1jf9hIablxTvwCrB5T0A</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Hao Hu</creator><creator>Junde Song</creator><creator>Yujing Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2008</creationdate><title>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</title><author>Hao Hu ; Junde Song ; Yujing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-7feb0a45cdf03e477d74e1fa268d37a3ca12002f32c92be0d72d9ad9ca8c28cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2008</creationdate><topic>Adaptive signal detection</topic><topic>Cognitive radio</topic><topic>Computational complexity</topic><topic>Frequency</topic><topic>Pattern classification</topic><topic>RF signals</topic><topic>Signal analysis</topic><topic>Spectral analysis</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Hu</creatorcontrib><creatorcontrib>Junde Song</creatorcontrib><creatorcontrib>Yujing Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Hu</au><au>Junde Song</au><au>Yujing Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</atitle><btitle>22nd International Conference on Advanced Information Networking and Applications (aina 2008)</btitle><stitle>AINA</stitle><date>2008</date><risdate>2008</risdate><spage>883</spage><epage>887</epage><pages>883-887</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><isbn>9780769530956</isbn><isbn>0769530958</isbn><abstract>Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2008.27</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-445X |
ispartof | 22nd International Conference on Advanced Information Networking and Applications (aina 2008), 2008, p.883-887 |
issn | 1550-445X 2332-5658 |
language | eng ; jpn |
recordid | cdi_ieee_primary_4482799 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive signal detection Cognitive radio Computational complexity Frequency Pattern classification RF signals Signal analysis Spectral analysis Support vector machine classification Support vector machines |
title | Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Signal%20Classification%20Based%20on%20Spectral%20Correlation%20Analysis%20and%20SVM%20in%20Cognitive%20Radio&rft.btitle=22nd%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(aina%202008)&rft.au=Hao%20Hu&rft.date=2008&rft.spage=883&rft.epage=887&rft.pages=883-887&rft.issn=1550-445X&rft.eissn=2332-5658&rft.isbn=9780769530956&rft.isbn_list=0769530958&rft_id=info:doi/10.1109/AINA.2008.27&rft_dat=%3Cieee_6IE%3E4482799%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4482799&rfr_iscdi=true |