Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio

Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hao Hu, Junde Song, Yujing Wang
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue
container_start_page 883
container_title
container_volume
creator Hao Hu
Junde Song
Yujing Wang
description Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.
doi_str_mv 10.1109/AINA.2008.27
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4482799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4482799</ieee_id><sourcerecordid>4482799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-7feb0a45cdf03e477d74e1fa268d37a3ca12002f32c92be0d72d9ad9ca8c28cb3</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMfYKm9efOSP7D1zXdyXIvWQlVw_bqVt0m2RNbdslmE_ntX6mkGnpmBIeSKwZwxcDfl6qmccwA75-aETLgQvFBa2VMyc8aC0U4JcEqfkQlTCgop1ecFmeX8BQDMaausm5CPKu1abOiiwZxTnTwOqWvpLeYY6GiqffRD_xfo-j42R1qOjUNOmWIbaPX-SFM78l2bhvQT6QuG1F2S8xqbHGf_OiVv93evi4di_bxcLcp1kZjSQ2HquAWUyocaRJTGBCMjq5FrG4RB4ZGNF3ktuHd8GyEYHhwG59F6bv1WTMn1cTfFGDf7Pn1jf9hIablxTvwCrB5T0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Hu ; Junde Song ; Yujing Wang</creator><creatorcontrib>Hao Hu ; Junde Song ; Yujing Wang</creatorcontrib><description>Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.</description><identifier>ISSN: 1550-445X</identifier><identifier>ISBN: 9780769530956</identifier><identifier>ISBN: 0769530958</identifier><identifier>EISSN: 2332-5658</identifier><identifier>DOI: 10.1109/AINA.2008.27</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Adaptive signal detection ; Cognitive radio ; Computational complexity ; Frequency ; Pattern classification ; RF signals ; Signal analysis ; Spectral analysis ; Support vector machine classification ; Support vector machines</subject><ispartof>22nd International Conference on Advanced Information Networking and Applications (aina 2008), 2008, p.883-887</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4482799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4482799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Hu</creatorcontrib><creatorcontrib>Junde Song</creatorcontrib><creatorcontrib>Yujing Wang</creatorcontrib><title>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</title><title>22nd International Conference on Advanced Information Networking and Applications (aina 2008)</title><addtitle>AINA</addtitle><description>Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.</description><subject>Adaptive signal detection</subject><subject>Cognitive radio</subject><subject>Computational complexity</subject><subject>Frequency</subject><subject>Pattern classification</subject><subject>RF signals</subject><subject>Signal analysis</subject><subject>Spectral analysis</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>9780769530956</isbn><isbn>0769530958</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEYhIMfYKm9efOSP7D1zXdyXIvWQlVw_bqVt0m2RNbdslmE_ntX6mkGnpmBIeSKwZwxcDfl6qmccwA75-aETLgQvFBa2VMyc8aC0U4JcEqfkQlTCgop1ecFmeX8BQDMaausm5CPKu1abOiiwZxTnTwOqWvpLeYY6GiqffRD_xfo-j42R1qOjUNOmWIbaPX-SFM78l2bhvQT6QuG1F2S8xqbHGf_OiVv93evi4di_bxcLcp1kZjSQ2HquAWUyocaRJTGBCMjq5FrG4RB4ZGNF3ktuHd8GyEYHhwG59F6bv1WTMn1cTfFGDf7Pn1jf9hIablxTvwCrB5T0A</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Hao Hu</creator><creator>Junde Song</creator><creator>Yujing Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2008</creationdate><title>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</title><author>Hao Hu ; Junde Song ; Yujing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-7feb0a45cdf03e477d74e1fa268d37a3ca12002f32c92be0d72d9ad9ca8c28cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2008</creationdate><topic>Adaptive signal detection</topic><topic>Cognitive radio</topic><topic>Computational complexity</topic><topic>Frequency</topic><topic>Pattern classification</topic><topic>RF signals</topic><topic>Signal analysis</topic><topic>Spectral analysis</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Hu</creatorcontrib><creatorcontrib>Junde Song</creatorcontrib><creatorcontrib>Yujing Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Hu</au><au>Junde Song</au><au>Yujing Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio</atitle><btitle>22nd International Conference on Advanced Information Networking and Applications (aina 2008)</btitle><stitle>AINA</stitle><date>2008</date><risdate>2008</risdate><spage>883</spage><epage>887</epage><pages>883-887</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><isbn>9780769530956</isbn><isbn>0769530958</isbn><abstract>Spectrum sensing is one of the most challenging functions in cognitive radio system. Detection of the presence of signals and distinction of the type of signals in a particular frequency band are critical for cognitive radios to adapt to the radio environment. In this paper, a novel approach to signal classification combining spectral correlation analysis and support vector machine (SVM) is introduced. Four spectral coherence characteristic parameters are chosen via spectral correlation analysis. By utilizing a nonlinear SVM, a significant amount of calculation is performed offline, thus the computational complexity is reduced. Simulations indicate that the overall success rate is above 92.8% with data length of 1000 when SNR is equal to 4 dB. Compared to the existing methods including the classifiers based on binary decision tree (BDT) and multilayer linear perceptron network (MLPN), the proposed approach is more effective in the case of low SNR and limited training numbers.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2008.27</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-445X
ispartof 22nd International Conference on Advanced Information Networking and Applications (aina 2008), 2008, p.883-887
issn 1550-445X
2332-5658
language eng ; jpn
recordid cdi_ieee_primary_4482799
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive signal detection
Cognitive radio
Computational complexity
Frequency
Pattern classification
RF signals
Signal analysis
Spectral analysis
Support vector machine classification
Support vector machines
title Signal Classification Based on Spectral Correlation Analysis and SVM in Cognitive Radio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Signal%20Classification%20Based%20on%20Spectral%20Correlation%20Analysis%20and%20SVM%20in%20Cognitive%20Radio&rft.btitle=22nd%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(aina%202008)&rft.au=Hao%20Hu&rft.date=2008&rft.spage=883&rft.epage=887&rft.pages=883-887&rft.issn=1550-445X&rft.eissn=2332-5658&rft.isbn=9780769530956&rft.isbn_list=0769530958&rft_id=info:doi/10.1109/AINA.2008.27&rft_dat=%3Cieee_6IE%3E4482799%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4482799&rfr_iscdi=true