Modified Particle Swarm Optimization for Search Missions

There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pitre, R.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue
container_start_page 362
container_title
container_volume
creator Pitre, R.R.
description There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.
doi_str_mv 10.1109/SSST.2008.4480255
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4480255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4480255</ieee_id><sourcerecordid>4480255</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6a0dd5cf639fd8876356d41aa1aad74b9d971d7bdfacf9c69b27b00bd0b5e9033</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheMNHGsfQNzkBTL-uSdLKd6gpcLUdUkmCUY6TkkGRJ_egt0IBw58B77FQeiGQksp2Luu6zYtAzCtEAaYlCdobrWhgglBDWh9ihpGFSWGcnn2b1NwjhoAKwgz1lyiq1o_AEApJhtkVmPIKceAX12Zcr-LuPtyZcDr_ZSH_OOmPH7iNBbcRVf6d7zKtR5QvUYXye1qnB97ht4eHzaLZ7JcP70s7pckUy0nohyEIPukuE3BGK24VEFQ5w4JWngbrKZB-5Bcn2yvrGfaA_gAXkYLnM_Q7Z83xxi3-5IHV763xxP4L5NNTCc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modified Particle Swarm Optimization for Search Missions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pitre, R.R.</creator><creatorcontrib>Pitre, R.R.</creatorcontrib><description>There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 9781424418060</identifier><identifier>ISBN: 1424418062</identifier><identifier>EISSN: 2161-8135</identifier><identifier>EISBN: 9781424418077</identifier><identifier>EISBN: 1424418070</identifier><identifier>DOI: 10.1109/SSST.2008.4480255</identifier><language>eng</language><publisher>IEEE</publisher><subject>Contracts ; Decision making ; Equations ; Iterative algorithms ; Kinematics ; Monte Carlo methods ; Particle swarm optimization ; Path planning ; Space exploration ; Vehicles</subject><ispartof>2008 40th Southeastern Symposium on System Theory (SSST), 2008, p.362-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4480255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4480255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pitre, R.R.</creatorcontrib><title>Modified Particle Swarm Optimization for Search Missions</title><title>2008 40th Southeastern Symposium on System Theory (SSST)</title><addtitle>SSST</addtitle><description>There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.</description><subject>Contracts</subject><subject>Decision making</subject><subject>Equations</subject><subject>Iterative algorithms</subject><subject>Kinematics</subject><subject>Monte Carlo methods</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Space exploration</subject><subject>Vehicles</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>9781424418060</isbn><isbn>1424418062</isbn><isbn>9781424418077</isbn><isbn>1424418070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheMNHGsfQNzkBTL-uSdLKd6gpcLUdUkmCUY6TkkGRJ_egt0IBw58B77FQeiGQksp2Luu6zYtAzCtEAaYlCdobrWhgglBDWh9ihpGFSWGcnn2b1NwjhoAKwgz1lyiq1o_AEApJhtkVmPIKceAX12Zcr-LuPtyZcDr_ZSH_OOmPH7iNBbcRVf6d7zKtR5QvUYXye1qnB97ht4eHzaLZ7JcP70s7pckUy0nohyEIPukuE3BGK24VEFQ5w4JWngbrKZB-5Bcn2yvrGfaA_gAXkYLnM_Q7Z83xxi3-5IHV763xxP4L5NNTCc</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Pitre, R.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Modified Particle Swarm Optimization for Search Missions</title><author>Pitre, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6a0dd5cf639fd8876356d41aa1aad74b9d971d7bdfacf9c69b27b00bd0b5e9033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Contracts</topic><topic>Decision making</topic><topic>Equations</topic><topic>Iterative algorithms</topic><topic>Kinematics</topic><topic>Monte Carlo methods</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Space exploration</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Pitre, R.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pitre, R.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modified Particle Swarm Optimization for Search Missions</atitle><btitle>2008 40th Southeastern Symposium on System Theory (SSST)</btitle><stitle>SSST</stitle><date>2008-03</date><risdate>2008</risdate><spage>362</spage><epage>365</epage><pages>362-365</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>9781424418060</isbn><isbn>1424418062</isbn><eisbn>9781424418077</eisbn><eisbn>1424418070</eisbn><abstract>There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.</abstract><pub>IEEE</pub><doi>10.1109/SSST.2008.4480255</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0094-2898
ispartof 2008 40th Southeastern Symposium on System Theory (SSST), 2008, p.362-365
issn 0094-2898
2161-8135
language eng
recordid cdi_ieee_primary_4480255
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Contracts
Decision making
Equations
Iterative algorithms
Kinematics
Monte Carlo methods
Particle swarm optimization
Path planning
Space exploration
Vehicles
title Modified Particle Swarm Optimization for Search Missions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modified%20Particle%20Swarm%20Optimization%20for%20Search%20Missions&rft.btitle=2008%2040th%20Southeastern%20Symposium%20on%20System%20Theory%20(SSST)&rft.au=Pitre,%20R.R.&rft.date=2008-03&rft.spage=362&rft.epage=365&rft.pages=362-365&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=9781424418060&rft.isbn_list=1424418062&rft_id=info:doi/10.1109/SSST.2008.4480255&rft_dat=%3Cieee_6IE%3E4480255%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418077&rft.eisbn_list=1424418070&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4480255&rfr_iscdi=true