Modified Particle Swarm Optimization for Search Missions
There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | |
container_start_page | 362 |
container_title | |
container_volume | |
creator | Pitre, R.R. |
description | There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization. |
doi_str_mv | 10.1109/SSST.2008.4480255 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4480255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4480255</ieee_id><sourcerecordid>4480255</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6a0dd5cf639fd8876356d41aa1aad74b9d971d7bdfacf9c69b27b00bd0b5e9033</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheMNHGsfQNzkBTL-uSdLKd6gpcLUdUkmCUY6TkkGRJ_egt0IBw58B77FQeiGQksp2Luu6zYtAzCtEAaYlCdobrWhgglBDWh9ihpGFSWGcnn2b1NwjhoAKwgz1lyiq1o_AEApJhtkVmPIKceAX12Zcr-LuPtyZcDr_ZSH_OOmPH7iNBbcRVf6d7zKtR5QvUYXye1qnB97ht4eHzaLZ7JcP70s7pckUy0nohyEIPukuE3BGK24VEFQ5w4JWngbrKZB-5Bcn2yvrGfaA_gAXkYLnM_Q7Z83xxi3-5IHV763xxP4L5NNTCc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modified Particle Swarm Optimization for Search Missions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pitre, R.R.</creator><creatorcontrib>Pitre, R.R.</creatorcontrib><description>There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 9781424418060</identifier><identifier>ISBN: 1424418062</identifier><identifier>EISSN: 2161-8135</identifier><identifier>EISBN: 9781424418077</identifier><identifier>EISBN: 1424418070</identifier><identifier>DOI: 10.1109/SSST.2008.4480255</identifier><language>eng</language><publisher>IEEE</publisher><subject>Contracts ; Decision making ; Equations ; Iterative algorithms ; Kinematics ; Monte Carlo methods ; Particle swarm optimization ; Path planning ; Space exploration ; Vehicles</subject><ispartof>2008 40th Southeastern Symposium on System Theory (SSST), 2008, p.362-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4480255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4480255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pitre, R.R.</creatorcontrib><title>Modified Particle Swarm Optimization for Search Missions</title><title>2008 40th Southeastern Symposium on System Theory (SSST)</title><addtitle>SSST</addtitle><description>There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.</description><subject>Contracts</subject><subject>Decision making</subject><subject>Equations</subject><subject>Iterative algorithms</subject><subject>Kinematics</subject><subject>Monte Carlo methods</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Space exploration</subject><subject>Vehicles</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>9781424418060</isbn><isbn>1424418062</isbn><isbn>9781424418077</isbn><isbn>1424418070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheMNHGsfQNzkBTL-uSdLKd6gpcLUdUkmCUY6TkkGRJ_egt0IBw58B77FQeiGQksp2Luu6zYtAzCtEAaYlCdobrWhgglBDWh9ihpGFSWGcnn2b1NwjhoAKwgz1lyiq1o_AEApJhtkVmPIKceAX12Zcr-LuPtyZcDr_ZSH_OOmPH7iNBbcRVf6d7zKtR5QvUYXye1qnB97ht4eHzaLZ7JcP70s7pckUy0nohyEIPukuE3BGK24VEFQ5w4JWngbrKZB-5Bcn2yvrGfaA_gAXkYLnM_Q7Z83xxi3-5IHV763xxP4L5NNTCc</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Pitre, R.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Modified Particle Swarm Optimization for Search Missions</title><author>Pitre, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6a0dd5cf639fd8876356d41aa1aad74b9d971d7bdfacf9c69b27b00bd0b5e9033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Contracts</topic><topic>Decision making</topic><topic>Equations</topic><topic>Iterative algorithms</topic><topic>Kinematics</topic><topic>Monte Carlo methods</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Space exploration</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Pitre, R.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pitre, R.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modified Particle Swarm Optimization for Search Missions</atitle><btitle>2008 40th Southeastern Symposium on System Theory (SSST)</btitle><stitle>SSST</stitle><date>2008-03</date><risdate>2008</risdate><spage>362</spage><epage>365</epage><pages>362-365</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>9781424418060</isbn><isbn>1424418062</isbn><eisbn>9781424418077</eisbn><eisbn>1424418070</eisbn><abstract>There are many applications that can benefit from a well planned search. Whether the search objective is a lost hiker, a stolen vehicle on the interstate, or enemies on the battlefield, some assumptions must be made about the search objective before the search can begin. These assumptions focus the search in areas that have a relatively high likelihood of finding the targets of interest. A common approach to mission planning is to apply an optimization algorithm and obtain a good solution based on these assumptions. In general, the mission planner uses simulated targets to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a major drawback is that the prior distribution of targets is only used to evaluate the search paths rather than to guide the optimization algorithm in generating the search paths. This paper introduces a method that explicitly exploits the sampled target distribution to create search paths, which naturally improves the results since the search paths directly depend on the time varying target locations. Results from a realistic cooperative path planning scenario show that explicit usage of target distributions can improve the performance of particle swarm optimization.</abstract><pub>IEEE</pub><doi>10.1109/SSST.2008.4480255</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0094-2898 |
ispartof | 2008 40th Southeastern Symposium on System Theory (SSST), 2008, p.362-365 |
issn | 0094-2898 2161-8135 |
language | eng |
recordid | cdi_ieee_primary_4480255 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Contracts Decision making Equations Iterative algorithms Kinematics Monte Carlo methods Particle swarm optimization Path planning Space exploration Vehicles |
title | Modified Particle Swarm Optimization for Search Missions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modified%20Particle%20Swarm%20Optimization%20for%20Search%20Missions&rft.btitle=2008%2040th%20Southeastern%20Symposium%20on%20System%20Theory%20(SSST)&rft.au=Pitre,%20R.R.&rft.date=2008-03&rft.spage=362&rft.epage=365&rft.pages=362-365&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=9781424418060&rft.isbn_list=1424418062&rft_id=info:doi/10.1109/SSST.2008.4480255&rft_dat=%3Cieee_6IE%3E4480255%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418077&rft.eisbn_list=1424418070&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4480255&rfr_iscdi=true |