Realisation of Fuzzy Cognitive Agents in the electrical trading domain

Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Borrie, D., Ozveren, C.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue
container_start_page 1159
container_title
container_volume
creator Borrie, D.
Ozveren, C.S.
description Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.
doi_str_mv 10.1109/UPEC.2007.4469115
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4469115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4469115</ieee_id><sourcerecordid>4469115</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f99ff3e49eb753f02f1731c5464060ddac9554b87226b298ffc3e49a17b741ac3</originalsourceid><addsrcrecordid>eNpFj11LwzAYRiMiqHM_QLzJH2jN23w1l6OsKgwUcdcjTd_USJdKE4Xt14s48OrhwOHAQ8gtsBKAmfvty7opK8Z0KYQyAPKMXINhUhrOBZz_g6ovyTKlD8YYGKWFkVekfUU7hmRzmCKdPG2_jscDbaYhhhy-ka4GjDnREGl-R4ojujwHZ0eaZ9uHONB-2tsQb8iFt2PC5WkXZNuu35rHYvP88NSsNkUALXPhjfGeozDYack9qzxoDk4KJZhifW-dkVJ0ta4q1VWm9t792hZ0pwVYxxfk7q8bEHH3OYe9nQ-702_-AylZS9U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Borrie, D. ; Ozveren, C.S.</creator><creatorcontrib>Borrie, D. ; Ozveren, C.S.</creatorcontrib><description>Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.</description><identifier>ISBN: 1905593368</identifier><identifier>ISBN: 9781905593361</identifier><identifier>EISBN: 1905593341</identifier><identifier>EISBN: 9781905593347</identifier><identifier>DOI: 10.1109/UPEC.2007.4469115</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Electricity supply industry ; Encapsulation ; Engines ; fuzzy cognitive agent ; fuzzy cognitive map ; Fuzzy cognitive maps ; Intelligent agent ; market simulation ; Open systems ; Power markets ; Protocols ; Robustness</subject><ispartof>2007 42nd International Universities Power Engineering Conference, 2007, p.1159-1163</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4469115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4469115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borrie, D.</creatorcontrib><creatorcontrib>Ozveren, C.S.</creatorcontrib><title>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</title><title>2007 42nd International Universities Power Engineering Conference</title><addtitle>UPEC</addtitle><description>Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.</description><subject>Artificial intelligence</subject><subject>Electricity supply industry</subject><subject>Encapsulation</subject><subject>Engines</subject><subject>fuzzy cognitive agent</subject><subject>fuzzy cognitive map</subject><subject>Fuzzy cognitive maps</subject><subject>Intelligent agent</subject><subject>market simulation</subject><subject>Open systems</subject><subject>Power markets</subject><subject>Protocols</subject><subject>Robustness</subject><isbn>1905593368</isbn><isbn>9781905593361</isbn><isbn>1905593341</isbn><isbn>9781905593347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj11LwzAYRiMiqHM_QLzJH2jN23w1l6OsKgwUcdcjTd_USJdKE4Xt14s48OrhwOHAQ8gtsBKAmfvty7opK8Z0KYQyAPKMXINhUhrOBZz_g6ovyTKlD8YYGKWFkVekfUU7hmRzmCKdPG2_jscDbaYhhhy-ka4GjDnREGl-R4ojujwHZ0eaZ9uHONB-2tsQb8iFt2PC5WkXZNuu35rHYvP88NSsNkUALXPhjfGeozDYack9qzxoDk4KJZhifW-dkVJ0ta4q1VWm9t792hZ0pwVYxxfk7q8bEHH3OYe9nQ-702_-AylZS9U</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Borrie, D.</creator><creator>Ozveren, C.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</title><author>Borrie, D. ; Ozveren, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f99ff3e49eb753f02f1731c5464060ddac9554b87226b298ffc3e49a17b741ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Electricity supply industry</topic><topic>Encapsulation</topic><topic>Engines</topic><topic>fuzzy cognitive agent</topic><topic>fuzzy cognitive map</topic><topic>Fuzzy cognitive maps</topic><topic>Intelligent agent</topic><topic>market simulation</topic><topic>Open systems</topic><topic>Power markets</topic><topic>Protocols</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Borrie, D.</creatorcontrib><creatorcontrib>Ozveren, C.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borrie, D.</au><au>Ozveren, C.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</atitle><btitle>2007 42nd International Universities Power Engineering Conference</btitle><stitle>UPEC</stitle><date>2007-09</date><risdate>2007</risdate><spage>1159</spage><epage>1163</epage><pages>1159-1163</pages><isbn>1905593368</isbn><isbn>9781905593361</isbn><eisbn>1905593341</eisbn><eisbn>9781905593347</eisbn><abstract>Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.</abstract><pub>IEEE</pub><doi>10.1109/UPEC.2007.4469115</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1905593368
ispartof 2007 42nd International Universities Power Engineering Conference, 2007, p.1159-1163
issn
language eng
recordid cdi_ieee_primary_4469115
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Electricity supply industry
Encapsulation
Engines
fuzzy cognitive agent
fuzzy cognitive map
Fuzzy cognitive maps
Intelligent agent
market simulation
Open systems
Power markets
Protocols
Robustness
title Realisation of Fuzzy Cognitive Agents in the electrical trading domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Realisation%20of%20Fuzzy%20Cognitive%20Agents%20in%20the%20electrical%20trading%20domain&rft.btitle=2007%2042nd%20International%20Universities%20Power%20Engineering%20Conference&rft.au=Borrie,%20D.&rft.date=2007-09&rft.spage=1159&rft.epage=1163&rft.pages=1159-1163&rft.isbn=1905593368&rft.isbn_list=9781905593361&rft_id=info:doi/10.1109/UPEC.2007.4469115&rft_dat=%3Cieee_6IE%3E4469115%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1905593341&rft.eisbn_list=9781905593347&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4469115&rfr_iscdi=true