Realisation of Fuzzy Cognitive Agents in the electrical trading domain
Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's be...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1163 |
---|---|
container_issue | |
container_start_page | 1159 |
container_title | |
container_volume | |
creator | Borrie, D. Ozveren, C.S. |
description | Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction. |
doi_str_mv | 10.1109/UPEC.2007.4469115 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4469115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4469115</ieee_id><sourcerecordid>4469115</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f99ff3e49eb753f02f1731c5464060ddac9554b87226b298ffc3e49a17b741ac3</originalsourceid><addsrcrecordid>eNpFj11LwzAYRiMiqHM_QLzJH2jN23w1l6OsKgwUcdcjTd_USJdKE4Xt14s48OrhwOHAQ8gtsBKAmfvty7opK8Z0KYQyAPKMXINhUhrOBZz_g6ovyTKlD8YYGKWFkVekfUU7hmRzmCKdPG2_jscDbaYhhhy-ka4GjDnREGl-R4ojujwHZ0eaZ9uHONB-2tsQb8iFt2PC5WkXZNuu35rHYvP88NSsNkUALXPhjfGeozDYack9qzxoDk4KJZhifW-dkVJ0ta4q1VWm9t792hZ0pwVYxxfk7q8bEHH3OYe9nQ-702_-AylZS9U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Borrie, D. ; Ozveren, C.S.</creator><creatorcontrib>Borrie, D. ; Ozveren, C.S.</creatorcontrib><description>Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.</description><identifier>ISBN: 1905593368</identifier><identifier>ISBN: 9781905593361</identifier><identifier>EISBN: 1905593341</identifier><identifier>EISBN: 9781905593347</identifier><identifier>DOI: 10.1109/UPEC.2007.4469115</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Electricity supply industry ; Encapsulation ; Engines ; fuzzy cognitive agent ; fuzzy cognitive map ; Fuzzy cognitive maps ; Intelligent agent ; market simulation ; Open systems ; Power markets ; Protocols ; Robustness</subject><ispartof>2007 42nd International Universities Power Engineering Conference, 2007, p.1159-1163</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4469115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4469115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borrie, D.</creatorcontrib><creatorcontrib>Ozveren, C.S.</creatorcontrib><title>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</title><title>2007 42nd International Universities Power Engineering Conference</title><addtitle>UPEC</addtitle><description>Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.</description><subject>Artificial intelligence</subject><subject>Electricity supply industry</subject><subject>Encapsulation</subject><subject>Engines</subject><subject>fuzzy cognitive agent</subject><subject>fuzzy cognitive map</subject><subject>Fuzzy cognitive maps</subject><subject>Intelligent agent</subject><subject>market simulation</subject><subject>Open systems</subject><subject>Power markets</subject><subject>Protocols</subject><subject>Robustness</subject><isbn>1905593368</isbn><isbn>9781905593361</isbn><isbn>1905593341</isbn><isbn>9781905593347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj11LwzAYRiMiqHM_QLzJH2jN23w1l6OsKgwUcdcjTd_USJdKE4Xt14s48OrhwOHAQ8gtsBKAmfvty7opK8Z0KYQyAPKMXINhUhrOBZz_g6ovyTKlD8YYGKWFkVekfUU7hmRzmCKdPG2_jscDbaYhhhy-ka4GjDnREGl-R4ojujwHZ0eaZ9uHONB-2tsQb8iFt2PC5WkXZNuu35rHYvP88NSsNkUALXPhjfGeozDYack9qzxoDk4KJZhifW-dkVJ0ta4q1VWm9t792hZ0pwVYxxfk7q8bEHH3OYe9nQ-702_-AylZS9U</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Borrie, D.</creator><creator>Ozveren, C.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</title><author>Borrie, D. ; Ozveren, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f99ff3e49eb753f02f1731c5464060ddac9554b87226b298ffc3e49a17b741ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Electricity supply industry</topic><topic>Encapsulation</topic><topic>Engines</topic><topic>fuzzy cognitive agent</topic><topic>fuzzy cognitive map</topic><topic>Fuzzy cognitive maps</topic><topic>Intelligent agent</topic><topic>market simulation</topic><topic>Open systems</topic><topic>Power markets</topic><topic>Protocols</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Borrie, D.</creatorcontrib><creatorcontrib>Ozveren, C.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borrie, D.</au><au>Ozveren, C.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Realisation of Fuzzy Cognitive Agents in the electrical trading domain</atitle><btitle>2007 42nd International Universities Power Engineering Conference</btitle><stitle>UPEC</stitle><date>2007-09</date><risdate>2007</risdate><spage>1159</spage><epage>1163</epage><pages>1159-1163</pages><isbn>1905593368</isbn><isbn>9781905593361</isbn><eisbn>1905593341</eisbn><eisbn>9781905593347</eisbn><abstract>Conceptually the fuzzy cognitive agent (FCA) is the novel integration of fuzzy cognitive maps (FCM) and adaptive intelligent agent (AI-Agent) paradigms. FCAs fundamentally differ from traditional rule based AI-Agents as their inference is derived by a unique FCM that encapsulates the agent's beliefs and desires. The benefits of this architecture are two fold; firstly the knowledge elicitation process to realise the inference engine of FCAs is enhanced by the visuality offered by FCMs; secondly the AI-Agent paradigm permits the fragmentation of the homogeneous domain FCM into functionally specific and discrete components. Discrete FCAs can then interact using standard AI-Agent protocols. Further, as a consequence of the distributed characteristic of the paradigm, naturally fragmented domains characterised by partial data availability can now be accurately captured in contrast to traditional FCMs that act homogeneously towards a single goal. As a first step, this article demonstrates the potential of the paradigm within the electricity market domain by integration of FCMs supported on Matlab Simulink platform encapsulated within a mimic AI-Agent shell encoded in the Matlab environment. The simple electricity market agency illustrates how agents with competing goals based on partial domain knowledge could interact to realistically simulate the processes within an actual auction.</abstract><pub>IEEE</pub><doi>10.1109/UPEC.2007.4469115</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1905593368 |
ispartof | 2007 42nd International Universities Power Engineering Conference, 2007, p.1159-1163 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4469115 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Electricity supply industry Encapsulation Engines fuzzy cognitive agent fuzzy cognitive map Fuzzy cognitive maps Intelligent agent market simulation Open systems Power markets Protocols Robustness |
title | Realisation of Fuzzy Cognitive Agents in the electrical trading domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Realisation%20of%20Fuzzy%20Cognitive%20Agents%20in%20the%20electrical%20trading%20domain&rft.btitle=2007%2042nd%20International%20Universities%20Power%20Engineering%20Conference&rft.au=Borrie,%20D.&rft.date=2007-09&rft.spage=1159&rft.epage=1163&rft.pages=1159-1163&rft.isbn=1905593368&rft.isbn_list=9781905593361&rft_id=info:doi/10.1109/UPEC.2007.4469115&rft_dat=%3Cieee_6IE%3E4469115%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1905593341&rft.eisbn_list=9781905593347&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4469115&rfr_iscdi=true |