Finding Intervention Points in the Pathogenesis of Dengue Viral Infection

We use probabilistic Boolean networks to simulate the pathogenesis of Dengue Hemorraghic Fever (DHF). Based on Chaturvedi's work, the strength of cytokine influences are modeled stochastically as inducement probabilities. We use an aggregated function approach to derive the DHF Infection Model....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.5315-5321
Hauptverfasser: Tay, J.C., Tan, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5321
container_issue
container_start_page 5315
container_title 2006 International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2006
creator Tay, J.C.
Tan, P.
description We use probabilistic Boolean networks to simulate the pathogenesis of Dengue Hemorraghic Fever (DHF). Based on Chaturvedi's work, the strength of cytokine influences are modeled stochastically as inducement probabilities. We use an aggregated function approach to derive the DHF Infection Model. Two basins of attractors are observed with synchronous updating; the Null Infection cycle attractor shows an expected cross-regulation of Th1 and Th2 cytokines corresponding to the homeostasis of an uninfected person, while the DHF Infection attractor shows the onset of DHF. With asynchronous updating, our model remains valid with clinical comparisons against qualitative changes in signal durations. In order to find intervention points that could prevent DHF we design a genetic algorithm to shift the DHF attractor to the DF attractor basin by using the DF final state as the fitness measure. Our simulation results identify TGF-beta, IL-8 and IL-13 as the intervention points which are consistent with known clinical results to prevent DHF from occurring
doi_str_mv 10.1109/IEMBS.2006.259796
format Article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4463004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4463004</ieee_id><sourcerecordid>68360154</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-763db8d134c8ff70532ec9574eb30499d9b324ad0eced0c53004b5c69878dc8a3</originalsourceid><addsrcrecordid>eNo9j0tPwzAQhC0BolXpD0BIyCduKXZsx_YR-oBIRVTiIW5RYm9ao9QpcYLEvydVC3vZw3wzO4vQJSUTSom-TedP9y-TmJBkEgstdXKCxloqymPOCWExP0VDKoSMqCQfAzQO4ZP0w3Qvx-doQKXmQmk6ROnCeev8Gqe-heYbfOtqj1e1823AzuN2A3iVt5t6DR6CC7gu8Qz8ugP87pq86n0lmL3pAp2VeRVgfNwj9LaYv04fo-XzQzq9W0YupryNZMJsoSxl3KiylESwGIwWkkPBCNfa6qLvn1sCBiwxghHCC2ESraSyRuVshG4Oubum_uogtNnWBQNVlXuou5AliiWECt6D10ewK7Zgs13jtnnzk_093wNXB8ABwL_MebK_yX4BSVZmWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68360154</pqid></control><display><type>article</type><title>Finding Intervention Points in the Pathogenesis of Dengue Viral Infection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tay, J.C. ; Tan, P.</creator><creatorcontrib>Tay, J.C. ; Tan, P.</creatorcontrib><description>We use probabilistic Boolean networks to simulate the pathogenesis of Dengue Hemorraghic Fever (DHF). Based on Chaturvedi's work, the strength of cytokine influences are modeled stochastically as inducement probabilities. We use an aggregated function approach to derive the DHF Infection Model. Two basins of attractors are observed with synchronous updating; the Null Infection cycle attractor shows an expected cross-regulation of Th1 and Th2 cytokines corresponding to the homeostasis of an uninfected person, while the DHF Infection attractor shows the onset of DHF. With asynchronous updating, our model remains valid with clinical comparisons against qualitative changes in signal durations. In order to find intervention points that could prevent DHF we design a genetic algorithm to shift the DHF attractor to the DF attractor basin by using the DF final state as the fitness measure. Our simulation results identify TGF-beta, IL-8 and IL-13 as the intervention points which are consistent with known clinical results to prevent DHF from occurring</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.259796</identifier><identifier>PMID: 17945891</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Cities and towns ; Decision support systems ; Dengue Virus - metabolism ; Disease Outbreaks ; Electric shock ; Gene Expression Regulation ; Genetic algorithms ; Hemorrhaging ; Humans ; Immune system ; Interleukin-13 - metabolism ; Interleukin-8 - metabolism ; Models, Biological ; Models, Statistical ; Models, Theoretical ; Pathogens ; Probability ; Programming Languages ; Severe Dengue - diagnosis ; Severe Dengue - therapy ; Stochastic Processes ; Transforming Growth Factor beta - metabolism ; USA Councils ; White blood cells</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.5315-5321</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4463004$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4463004$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17945891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tay, J.C.</creatorcontrib><creatorcontrib>Tan, P.</creatorcontrib><title>Finding Intervention Points in the Pathogenesis of Dengue Viral Infection</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>We use probabilistic Boolean networks to simulate the pathogenesis of Dengue Hemorraghic Fever (DHF). Based on Chaturvedi's work, the strength of cytokine influences are modeled stochastically as inducement probabilities. We use an aggregated function approach to derive the DHF Infection Model. Two basins of attractors are observed with synchronous updating; the Null Infection cycle attractor shows an expected cross-regulation of Th1 and Th2 cytokines corresponding to the homeostasis of an uninfected person, while the DHF Infection attractor shows the onset of DHF. With asynchronous updating, our model remains valid with clinical comparisons against qualitative changes in signal durations. In order to find intervention points that could prevent DHF we design a genetic algorithm to shift the DHF attractor to the DF attractor basin by using the DF final state as the fitness measure. Our simulation results identify TGF-beta, IL-8 and IL-13 as the intervention points which are consistent with known clinical results to prevent DHF from occurring</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Cities and towns</subject><subject>Decision support systems</subject><subject>Dengue Virus - metabolism</subject><subject>Disease Outbreaks</subject><subject>Electric shock</subject><subject>Gene Expression Regulation</subject><subject>Genetic algorithms</subject><subject>Hemorrhaging</subject><subject>Humans</subject><subject>Immune system</subject><subject>Interleukin-13 - metabolism</subject><subject>Interleukin-8 - metabolism</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Pathogens</subject><subject>Probability</subject><subject>Programming Languages</subject><subject>Severe Dengue - diagnosis</subject><subject>Severe Dengue - therapy</subject><subject>Stochastic Processes</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>USA Councils</subject><subject>White blood cells</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9j0tPwzAQhC0BolXpD0BIyCduKXZsx_YR-oBIRVTiIW5RYm9ao9QpcYLEvydVC3vZw3wzO4vQJSUTSom-TedP9y-TmJBkEgstdXKCxloqymPOCWExP0VDKoSMqCQfAzQO4ZP0w3Qvx-doQKXmQmk6ROnCeev8Gqe-heYbfOtqj1e1823AzuN2A3iVt5t6DR6CC7gu8Qz8ugP87pq86n0lmL3pAp2VeRVgfNwj9LaYv04fo-XzQzq9W0YupryNZMJsoSxl3KiylESwGIwWkkPBCNfa6qLvn1sCBiwxghHCC2ESraSyRuVshG4Oubum_uogtNnWBQNVlXuou5AliiWECt6D10ewK7Zgs13jtnnzk_093wNXB8ABwL_MebK_yX4BSVZmWA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Tay, J.C.</creator><creator>Tan, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Finding Intervention Points in the Pathogenesis of Dengue Viral Infection</title><author>Tay, J.C. ; Tan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-763db8d134c8ff70532ec9574eb30499d9b324ad0eced0c53004b5c69878dc8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Cities and towns</topic><topic>Decision support systems</topic><topic>Dengue Virus - metabolism</topic><topic>Disease Outbreaks</topic><topic>Electric shock</topic><topic>Gene Expression Regulation</topic><topic>Genetic algorithms</topic><topic>Hemorrhaging</topic><topic>Humans</topic><topic>Immune system</topic><topic>Interleukin-13 - metabolism</topic><topic>Interleukin-8 - metabolism</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Pathogens</topic><topic>Probability</topic><topic>Programming Languages</topic><topic>Severe Dengue - diagnosis</topic><topic>Severe Dengue - therapy</topic><topic>Stochastic Processes</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>USA Councils</topic><topic>White blood cells</topic><toplevel>online_resources</toplevel><creatorcontrib>Tay, J.C.</creatorcontrib><creatorcontrib>Tan, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tay, J.C.</au><au>Tan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Intervention Points in the Pathogenesis of Dengue Viral Infection</atitle><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>5315</spage><epage>5321</epage><pages>5315-5321</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>We use probabilistic Boolean networks to simulate the pathogenesis of Dengue Hemorraghic Fever (DHF). Based on Chaturvedi's work, the strength of cytokine influences are modeled stochastically as inducement probabilities. We use an aggregated function approach to derive the DHF Infection Model. Two basins of attractors are observed with synchronous updating; the Null Infection cycle attractor shows an expected cross-regulation of Th1 and Th2 cytokines corresponding to the homeostasis of an uninfected person, while the DHF Infection attractor shows the onset of DHF. With asynchronous updating, our model remains valid with clinical comparisons against qualitative changes in signal durations. In order to find intervention points that could prevent DHF we design a genetic algorithm to shift the DHF attractor to the DF attractor basin by using the DF final state as the fitness measure. Our simulation results identify TGF-beta, IL-8 and IL-13 as the intervention points which are consistent with known clinical results to prevent DHF from occurring</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17945891</pmid><doi>10.1109/IEMBS.2006.259796</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1557-170X
ispartof 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.5315-5321
issn 1557-170X
language eng
recordid cdi_ieee_primary_4463004
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Biological system modeling
Cities and towns
Decision support systems
Dengue Virus - metabolism
Disease Outbreaks
Electric shock
Gene Expression Regulation
Genetic algorithms
Hemorrhaging
Humans
Immune system
Interleukin-13 - metabolism
Interleukin-8 - metabolism
Models, Biological
Models, Statistical
Models, Theoretical
Pathogens
Probability
Programming Languages
Severe Dengue - diagnosis
Severe Dengue - therapy
Stochastic Processes
Transforming Growth Factor beta - metabolism
USA Councils
White blood cells
title Finding Intervention Points in the Pathogenesis of Dengue Viral Infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Intervention%20Points%20in%20the%20Pathogenesis%20of%20Dengue%20Viral%20Infection&rft.jtitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Tay,%20J.C.&rft.date=2006&rft.volume=2006&rft.spage=5315&rft.epage=5321&rft.pages=5315-5321&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.259796&rft_dat=%3Cproquest_6IE%3E68360154%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68360154&rft_id=info:pmid/17945891&rft_ieee_id=4463004&rfr_iscdi=true