Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons
The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have...
Gespeichert in:
Veröffentlicht in: | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.2844-2847 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2847 |
---|---|
container_issue | |
container_start_page | 2844 |
container_title | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | 2006 |
creator | Sasoglu, F.M. Bohl, A.J. Layton, B.E. |
description | The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold |
doi_str_mv | 10.1109/IEMBS.2006.260311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4462388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4462388</ieee_id><sourcerecordid>68392413</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1771-1fc57d083a7f9ecc3fb1371f393faed6209d8556fec709ffa9086a395d0763363</originalsourceid><addsrcrecordid>eNo9kEFrGzEQhQVtaILjH1AKRafe7Eo7u9LqmDpuY7BJwAn0ZsZaKVbYlVxpl9Q_of-6cuJkGJjD-3jDe4R85mzKOVPfF_PVj_W0YExMC8GA8w9krGTNy6IsGYOi_EgueFXJCZfs9zkZp_TE8oDKcvGJnHOpSqFquCD_Vk7HYHEbncbeBU_3MWjTDNHQYOnd9WpNuyOyNdhRjBEPdEjOP9L9LvShdf0uPEbc7w7Uhkhb7Jx3RxPn-yOFvqF7p4M3z302z4w2tI_oUzPol3958W_w6ZKcWWyTGZ_uiDz8nN_PbibL21-L2dVy4riUfMKtrmTDakBpldEa7JaD5BYUWDSNKJhq6qoS1mjJlLWoWC0QVNUwKQAEjMi3V98c9M9gUr_pXNKmbdGbMKSNqEEVJYcMfj2Bw7YzzSZn6jAeNm_lZeDLK-CMMe9yWYoC6hr-A-vDf5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68392413</pqid></control><display><type>article</type><title>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sasoglu, F.M. ; Bohl, A.J. ; Layton, B.E.</creator><creatorcontrib>Sasoglu, F.M. ; Bohl, A.J. ; Layton, B.E.</creatorcontrib><description>The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.260311</identifier><identifier>PMID: 17946983</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Axons - physiology ; Biocompatible Materials - chemistry ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Dimethylpolysiloxanes - chemistry ; Equipment Design ; Equipment Failure Analysis ; Flexible structures ; Force measurement ; force transduction ; Laminin - chemistry ; Lithography ; Manometry - instrumentation ; Manometry - methods ; Mechanotransduction, Cellular - physiology ; Microarray Analysis - instrumentation ; microbeam ; Miniaturization ; Nerve fibers ; Neural array ; Neurons ; Nylons - chemistry ; Optical arrays ; Optical design ; Optical polymers ; Photography - methods ; Printing ; Springs ; Stress, Mechanical ; Transducers</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.2844-2847</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4462388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4462388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17946983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasoglu, F.M.</creatorcontrib><creatorcontrib>Bohl, A.J.</creatorcontrib><creatorcontrib>Layton, B.E.</creatorcontrib><title>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold</description><subject>Axons - physiology</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flexible structures</subject><subject>Force measurement</subject><subject>force transduction</subject><subject>Laminin - chemistry</subject><subject>Lithography</subject><subject>Manometry - instrumentation</subject><subject>Manometry - methods</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Microarray Analysis - instrumentation</subject><subject>microbeam</subject><subject>Miniaturization</subject><subject>Nerve fibers</subject><subject>Neural array</subject><subject>Neurons</subject><subject>Nylons - chemistry</subject><subject>Optical arrays</subject><subject>Optical design</subject><subject>Optical polymers</subject><subject>Photography - methods</subject><subject>Printing</subject><subject>Springs</subject><subject>Stress, Mechanical</subject><subject>Transducers</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kEFrGzEQhQVtaILjH1AKRafe7Eo7u9LqmDpuY7BJwAn0ZsZaKVbYlVxpl9Q_of-6cuJkGJjD-3jDe4R85mzKOVPfF_PVj_W0YExMC8GA8w9krGTNy6IsGYOi_EgueFXJCZfs9zkZp_TE8oDKcvGJnHOpSqFquCD_Vk7HYHEbncbeBU_3MWjTDNHQYOnd9WpNuyOyNdhRjBEPdEjOP9L9LvShdf0uPEbc7w7Uhkhb7Jx3RxPn-yOFvqF7p4M3z302z4w2tI_oUzPol3958W_w6ZKcWWyTGZ_uiDz8nN_PbibL21-L2dVy4riUfMKtrmTDakBpldEa7JaD5BYUWDSNKJhq6qoS1mjJlLWoWC0QVNUwKQAEjMi3V98c9M9gUr_pXNKmbdGbMKSNqEEVJYcMfj2Bw7YzzSZn6jAeNm_lZeDLK-CMMe9yWYoC6hr-A-vDf5w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sasoglu, F.M.</creator><creator>Bohl, A.J.</creator><creator>Layton, B.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</title><author>Sasoglu, F.M. ; Bohl, A.J. ; Layton, B.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1771-1fc57d083a7f9ecc3fb1371f393faed6209d8556fec709ffa9086a395d0763363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Axons - physiology</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flexible structures</topic><topic>Force measurement</topic><topic>force transduction</topic><topic>Laminin - chemistry</topic><topic>Lithography</topic><topic>Manometry - instrumentation</topic><topic>Manometry - methods</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Microarray Analysis - instrumentation</topic><topic>microbeam</topic><topic>Miniaturization</topic><topic>Nerve fibers</topic><topic>Neural array</topic><topic>Neurons</topic><topic>Nylons - chemistry</topic><topic>Optical arrays</topic><topic>Optical design</topic><topic>Optical polymers</topic><topic>Photography - methods</topic><topic>Printing</topic><topic>Springs</topic><topic>Stress, Mechanical</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sasoglu, F.M.</creatorcontrib><creatorcontrib>Bohl, A.J.</creatorcontrib><creatorcontrib>Layton, B.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sasoglu, F.M.</au><au>Bohl, A.J.</au><au>Layton, B.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</atitle><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>2844</spage><epage>2847</epage><pages>2844-2847</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17946983</pmid><doi>10.1109/IEMBS.2006.260311</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1557-170X |
ispartof | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.2844-2847 |
issn | 1557-170X |
language | eng |
recordid | cdi_ieee_primary_4462388 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Axons - physiology Biocompatible Materials - chemistry Biosensing Techniques - instrumentation Biosensing Techniques - methods Dimethylpolysiloxanes - chemistry Equipment Design Equipment Failure Analysis Flexible structures Force measurement force transduction Laminin - chemistry Lithography Manometry - instrumentation Manometry - methods Mechanotransduction, Cellular - physiology Microarray Analysis - instrumentation microbeam Miniaturization Nerve fibers Neural array Neurons Nylons - chemistry Optical arrays Optical design Optical polymers Photography - methods Printing Springs Stress, Mechanical Transducers |
title | Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfabrication%20procedure%20of%20PDMS%20microbeam%20array%20using%20photolithography%20for%20laminin%20printing%20and%20piconewton%20force%20transduction%20on%20axons&rft.jtitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Sasoglu,%20F.M.&rft.date=2006&rft.volume=2006&rft.spage=2844&rft.epage=2847&rft.pages=2844-2847&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.260311&rft_dat=%3Cproquest_6IE%3E68392413%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68392413&rft_id=info:pmid/17946983&rft_ieee_id=4462388&rfr_iscdi=true |