Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons

The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.2844-2847
Hauptverfasser: Sasoglu, F.M., Bohl, A.J., Layton, B.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2847
container_issue
container_start_page 2844
container_title 2006 International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2006
creator Sasoglu, F.M.
Bohl, A.J.
Layton, B.E.
description The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold
doi_str_mv 10.1109/IEMBS.2006.260311
format Article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4462388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4462388</ieee_id><sourcerecordid>68392413</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1771-1fc57d083a7f9ecc3fb1371f393faed6209d8556fec709ffa9086a395d0763363</originalsourceid><addsrcrecordid>eNo9kEFrGzEQhQVtaILjH1AKRafe7Eo7u9LqmDpuY7BJwAn0ZsZaKVbYlVxpl9Q_of-6cuJkGJjD-3jDe4R85mzKOVPfF_PVj_W0YExMC8GA8w9krGTNy6IsGYOi_EgueFXJCZfs9zkZp_TE8oDKcvGJnHOpSqFquCD_Vk7HYHEbncbeBU_3MWjTDNHQYOnd9WpNuyOyNdhRjBEPdEjOP9L9LvShdf0uPEbc7w7Uhkhb7Jx3RxPn-yOFvqF7p4M3z302z4w2tI_oUzPol3958W_w6ZKcWWyTGZ_uiDz8nN_PbibL21-L2dVy4riUfMKtrmTDakBpldEa7JaD5BYUWDSNKJhq6qoS1mjJlLWoWC0QVNUwKQAEjMi3V98c9M9gUr_pXNKmbdGbMKSNqEEVJYcMfj2Bw7YzzSZn6jAeNm_lZeDLK-CMMe9yWYoC6hr-A-vDf5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68392413</pqid></control><display><type>article</type><title>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sasoglu, F.M. ; Bohl, A.J. ; Layton, B.E.</creator><creatorcontrib>Sasoglu, F.M. ; Bohl, A.J. ; Layton, B.E.</creatorcontrib><description>The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.260311</identifier><identifier>PMID: 17946983</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Axons - physiology ; Biocompatible Materials - chemistry ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Dimethylpolysiloxanes - chemistry ; Equipment Design ; Equipment Failure Analysis ; Flexible structures ; Force measurement ; force transduction ; Laminin - chemistry ; Lithography ; Manometry - instrumentation ; Manometry - methods ; Mechanotransduction, Cellular - physiology ; Microarray Analysis - instrumentation ; microbeam ; Miniaturization ; Nerve fibers ; Neural array ; Neurons ; Nylons - chemistry ; Optical arrays ; Optical design ; Optical polymers ; Photography - methods ; Printing ; Springs ; Stress, Mechanical ; Transducers</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.2844-2847</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4462388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4462388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17946983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasoglu, F.M.</creatorcontrib><creatorcontrib>Bohl, A.J.</creatorcontrib><creatorcontrib>Layton, B.E.</creatorcontrib><title>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold</description><subject>Axons - physiology</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flexible structures</subject><subject>Force measurement</subject><subject>force transduction</subject><subject>Laminin - chemistry</subject><subject>Lithography</subject><subject>Manometry - instrumentation</subject><subject>Manometry - methods</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Microarray Analysis - instrumentation</subject><subject>microbeam</subject><subject>Miniaturization</subject><subject>Nerve fibers</subject><subject>Neural array</subject><subject>Neurons</subject><subject>Nylons - chemistry</subject><subject>Optical arrays</subject><subject>Optical design</subject><subject>Optical polymers</subject><subject>Photography - methods</subject><subject>Printing</subject><subject>Springs</subject><subject>Stress, Mechanical</subject><subject>Transducers</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kEFrGzEQhQVtaILjH1AKRafe7Eo7u9LqmDpuY7BJwAn0ZsZaKVbYlVxpl9Q_of-6cuJkGJjD-3jDe4R85mzKOVPfF_PVj_W0YExMC8GA8w9krGTNy6IsGYOi_EgueFXJCZfs9zkZp_TE8oDKcvGJnHOpSqFquCD_Vk7HYHEbncbeBU_3MWjTDNHQYOnd9WpNuyOyNdhRjBEPdEjOP9L9LvShdf0uPEbc7w7Uhkhb7Jx3RxPn-yOFvqF7p4M3z302z4w2tI_oUzPol3958W_w6ZKcWWyTGZ_uiDz8nN_PbibL21-L2dVy4riUfMKtrmTDakBpldEa7JaD5BYUWDSNKJhq6qoS1mjJlLWoWC0QVNUwKQAEjMi3V98c9M9gUr_pXNKmbdGbMKSNqEEVJYcMfj2Bw7YzzSZn6jAeNm_lZeDLK-CMMe9yWYoC6hr-A-vDf5w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sasoglu, F.M.</creator><creator>Bohl, A.J.</creator><creator>Layton, B.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</title><author>Sasoglu, F.M. ; Bohl, A.J. ; Layton, B.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1771-1fc57d083a7f9ecc3fb1371f393faed6209d8556fec709ffa9086a395d0763363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Axons - physiology</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flexible structures</topic><topic>Force measurement</topic><topic>force transduction</topic><topic>Laminin - chemistry</topic><topic>Lithography</topic><topic>Manometry - instrumentation</topic><topic>Manometry - methods</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Microarray Analysis - instrumentation</topic><topic>microbeam</topic><topic>Miniaturization</topic><topic>Nerve fibers</topic><topic>Neural array</topic><topic>Neurons</topic><topic>Nylons - chemistry</topic><topic>Optical arrays</topic><topic>Optical design</topic><topic>Optical polymers</topic><topic>Photography - methods</topic><topic>Printing</topic><topic>Springs</topic><topic>Stress, Mechanical</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sasoglu, F.M.</creatorcontrib><creatorcontrib>Bohl, A.J.</creatorcontrib><creatorcontrib>Layton, B.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sasoglu, F.M.</au><au>Bohl, A.J.</au><au>Layton, B.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons</atitle><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>2844</spage><epage>2847</epage><pages>2844-2847</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10pN/mum. We have fabricated circular microbeams with Sylgardreg polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100times100 tapered microcone array with each beam having a length of 100mum, and a base diameter of 10mum. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17946983</pmid><doi>10.1109/IEMBS.2006.260311</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1557-170X
ispartof 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.2844-2847
issn 1557-170X
language eng
recordid cdi_ieee_primary_4462388
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Axons - physiology
Biocompatible Materials - chemistry
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Dimethylpolysiloxanes - chemistry
Equipment Design
Equipment Failure Analysis
Flexible structures
Force measurement
force transduction
Laminin - chemistry
Lithography
Manometry - instrumentation
Manometry - methods
Mechanotransduction, Cellular - physiology
Microarray Analysis - instrumentation
microbeam
Miniaturization
Nerve fibers
Neural array
Neurons
Nylons - chemistry
Optical arrays
Optical design
Optical polymers
Photography - methods
Printing
Springs
Stress, Mechanical
Transducers
title Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfabrication%20procedure%20of%20PDMS%20microbeam%20array%20using%20photolithography%20for%20laminin%20printing%20and%20piconewton%20force%20transduction%20on%20axons&rft.jtitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Sasoglu,%20F.M.&rft.date=2006&rft.volume=2006&rft.spage=2844&rft.epage=2847&rft.pages=2844-2847&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.260311&rft_dat=%3Cproquest_6IE%3E68392413%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68392413&rft_id=info:pmid/17946983&rft_ieee_id=4462388&rfr_iscdi=true