Automatic Assessment of Voice Quality According to the GRBAS Scale

Nowadays, the most extended techniques to measure the voice quality are based on perceptual evaluation by well trained professionals. The GRBAS scale is a widely used method for perceptual evaluation of voice quality. The GRBAS scale is widely used in Japan and there is increasing interest in both E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saenz-Lechon, N., Godino-Llorente, J.I., Osma-Ruiz, V., Blanco-Velasco, M., Cruz-Roldan, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2481
container_issue
container_start_page 2478
container_title
container_volume 2006
creator Saenz-Lechon, N.
Godino-Llorente, J.I.
Osma-Ruiz, V.
Blanco-Velasco, M.
Cruz-Roldan, F.
description Nowadays, the most extended techniques to measure the voice quality are based on perceptual evaluation by well trained professionals. The GRBAS scale is a widely used method for perceptual evaluation of voice quality. The GRBAS scale is widely used in Japan and there is increasing interest in both Europe and the United States. However, this technique needs well-trained experts, and is based on the evaluator's expertise, depending a lot on his own psycho-physical state. Furthermore, a great variability in the assessments performed from one evaluator to another is observed. Therefore, an objective method to provide such measurement of voice quality would be very valuable. In this paper, the automatic assessment of voice quality is addressed by means of short-term Mel cepstral parameters (MFCC), and learning vector quantization (LVQ) in a pattern recognition stage. Results show that this approach provides acceptable results for this purpose, with accuracy around 65% at the best
doi_str_mv 10.1109/IEMBS.2006.260603
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4462297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4462297</ieee_id><sourcerecordid>68359686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-39467e51fcce3597029ffa9c8e4e0384dbe956356a16d35527ce5123625b7f983</originalsourceid><addsrcrecordid>eNo9z01Lw0AQBuAFFVtqf4AIsidvqfu92WNa2lqoiFbFW9huJhpJmprdHPrvXWh1LnN4H95hELqmZEIpMfer-eN0M2GEqAlTRBF-hsZGp1QwIQjhTJyjIZVSJ1STjwEae_9N4nATY3aJBlQboSRVQzTN-tA2NlQOZ96D9w3sAm5L_N5WDvBzb-sqHHDmXNsV1e4ThxaHL8DLl2m2wRtna7hCF6WtPYxPe4TeFvPX2UOyflquZtk6cZySkMTjSoOkpXPApdGEmbK0xqUggPBUFFswUnGpLFUFl5JpFzXjismtLk3KR-ju2Lvv2p8efMibyjuoa7uDtve5SmOtSlWEtyfYbxso8n1XNbY75H9fR3BzBBUA_MdCKMaM5r_KkGIa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>68359686</pqid></control><display><type>conference_proceeding</type><title>Automatic Assessment of Voice Quality According to the GRBAS Scale</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saenz-Lechon, N. ; Godino-Llorente, J.I. ; Osma-Ruiz, V. ; Blanco-Velasco, M. ; Cruz-Roldan, F.</creator><creatorcontrib>Saenz-Lechon, N. ; Godino-Llorente, J.I. ; Osma-Ruiz, V. ; Blanco-Velasco, M. ; Cruz-Roldan, F.</creatorcontrib><description>Nowadays, the most extended techniques to measure the voice quality are based on perceptual evaluation by well trained professionals. The GRBAS scale is a widely used method for perceptual evaluation of voice quality. The GRBAS scale is widely used in Japan and there is increasing interest in both Europe and the United States. However, this technique needs well-trained experts, and is based on the evaluator's expertise, depending a lot on his own psycho-physical state. Furthermore, a great variability in the assessments performed from one evaluator to another is observed. Therefore, an objective method to provide such measurement of voice quality would be very valuable. In this paper, the automatic assessment of voice quality is addressed by means of short-term Mel cepstral parameters (MFCC), and learning vector quantization (LVQ) in a pattern recognition stage. Results show that this approach provides acceptable results for this purpose, with accuracy around 65% at the best</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.260603</identifier><identifier>PMID: 17946516</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Circuits ; Cities and towns ; Convergence ; Diagnosis, Computer-Assisted - methods ; Humans ; Morphology ; Pathology ; Pattern Recognition, Automated - methods ; Protocols ; Psychoacoustic models ; Psychology ; Reproducibility of Results ; Sensitivity and Specificity ; Severity of Illness Index ; Sound Spectrography - methods ; Speech analysis ; Speech Production Measurement - methods ; USA Councils ; Voice Disorders - classification ; Voice Disorders - diagnosis ; Voice Quality</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.2478-2481</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-39467e51fcce3597029ffa9c8e4e0384dbe956356a16d35527ce5123625b7f983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4462297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4462297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17946516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saenz-Lechon, N.</creatorcontrib><creatorcontrib>Godino-Llorente, J.I.</creatorcontrib><creatorcontrib>Osma-Ruiz, V.</creatorcontrib><creatorcontrib>Blanco-Velasco, M.</creatorcontrib><creatorcontrib>Cruz-Roldan, F.</creatorcontrib><title>Automatic Assessment of Voice Quality According to the GRBAS Scale</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Nowadays, the most extended techniques to measure the voice quality are based on perceptual evaluation by well trained professionals. The GRBAS scale is a widely used method for perceptual evaluation of voice quality. The GRBAS scale is widely used in Japan and there is increasing interest in both Europe and the United States. However, this technique needs well-trained experts, and is based on the evaluator's expertise, depending a lot on his own psycho-physical state. Furthermore, a great variability in the assessments performed from one evaluator to another is observed. Therefore, an objective method to provide such measurement of voice quality would be very valuable. In this paper, the automatic assessment of voice quality is addressed by means of short-term Mel cepstral parameters (MFCC), and learning vector quantization (LVQ) in a pattern recognition stage. Results show that this approach provides acceptable results for this purpose, with accuracy around 65% at the best</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Circuits</subject><subject>Cities and towns</subject><subject>Convergence</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Humans</subject><subject>Morphology</subject><subject>Pathology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protocols</subject><subject>Psychoacoustic models</subject><subject>Psychology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Severity of Illness Index</subject><subject>Sound Spectrography - methods</subject><subject>Speech analysis</subject><subject>Speech Production Measurement - methods</subject><subject>USA Councils</subject><subject>Voice Disorders - classification</subject><subject>Voice Disorders - diagnosis</subject><subject>Voice Quality</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9z01Lw0AQBuAFFVtqf4AIsidvqfu92WNa2lqoiFbFW9huJhpJmprdHPrvXWh1LnN4H95hELqmZEIpMfer-eN0M2GEqAlTRBF-hsZGp1QwIQjhTJyjIZVSJ1STjwEae_9N4nATY3aJBlQboSRVQzTN-tA2NlQOZ96D9w3sAm5L_N5WDvBzb-sqHHDmXNsV1e4ThxaHL8DLl2m2wRtna7hCF6WtPYxPe4TeFvPX2UOyflquZtk6cZySkMTjSoOkpXPApdGEmbK0xqUggPBUFFswUnGpLFUFl5JpFzXjismtLk3KR-ju2Lvv2p8efMibyjuoa7uDtve5SmOtSlWEtyfYbxso8n1XNbY75H9fR3BzBBUA_MdCKMaM5r_KkGIa</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Saenz-Lechon, N.</creator><creator>Godino-Llorente, J.I.</creator><creator>Osma-Ruiz, V.</creator><creator>Blanco-Velasco, M.</creator><creator>Cruz-Roldan, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Automatic Assessment of Voice Quality According to the GRBAS Scale</title><author>Saenz-Lechon, N. ; Godino-Llorente, J.I. ; Osma-Ruiz, V. ; Blanco-Velasco, M. ; Cruz-Roldan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-39467e51fcce3597029ffa9c8e4e0384dbe956356a16d35527ce5123625b7f983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Circuits</topic><topic>Cities and towns</topic><topic>Convergence</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Humans</topic><topic>Morphology</topic><topic>Pathology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protocols</topic><topic>Psychoacoustic models</topic><topic>Psychology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Severity of Illness Index</topic><topic>Sound Spectrography - methods</topic><topic>Speech analysis</topic><topic>Speech Production Measurement - methods</topic><topic>USA Councils</topic><topic>Voice Disorders - classification</topic><topic>Voice Disorders - diagnosis</topic><topic>Voice Quality</topic><toplevel>online_resources</toplevel><creatorcontrib>Saenz-Lechon, N.</creatorcontrib><creatorcontrib>Godino-Llorente, J.I.</creatorcontrib><creatorcontrib>Osma-Ruiz, V.</creatorcontrib><creatorcontrib>Blanco-Velasco, M.</creatorcontrib><creatorcontrib>Cruz-Roldan, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saenz-Lechon, N.</au><au>Godino-Llorente, J.I.</au><au>Osma-Ruiz, V.</au><au>Blanco-Velasco, M.</au><au>Cruz-Roldan, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Assessment of Voice Quality According to the GRBAS Scale</atitle><btitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>2006</volume><spage>2478</spage><epage>2481</epage><pages>2478-2481</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>Nowadays, the most extended techniques to measure the voice quality are based on perceptual evaluation by well trained professionals. The GRBAS scale is a widely used method for perceptual evaluation of voice quality. The GRBAS scale is widely used in Japan and there is increasing interest in both Europe and the United States. However, this technique needs well-trained experts, and is based on the evaluator's expertise, depending a lot on his own psycho-physical state. Furthermore, a great variability in the assessments performed from one evaluator to another is observed. Therefore, an objective method to provide such measurement of voice quality would be very valuable. In this paper, the automatic assessment of voice quality is addressed by means of short-term Mel cepstral parameters (MFCC), and learning vector quantization (LVQ) in a pattern recognition stage. Results show that this approach provides acceptable results for this purpose, with accuracy around 65% at the best</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17946516</pmid><doi>10.1109/IEMBS.2006.260603</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1557-170X
ispartof 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.2478-2481
issn 1557-170X
language eng
recordid cdi_ieee_primary_4462297
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Artificial Intelligence
Circuits
Cities and towns
Convergence
Diagnosis, Computer-Assisted - methods
Humans
Morphology
Pathology
Pattern Recognition, Automated - methods
Protocols
Psychoacoustic models
Psychology
Reproducibility of Results
Sensitivity and Specificity
Severity of Illness Index
Sound Spectrography - methods
Speech analysis
Speech Production Measurement - methods
USA Councils
Voice Disorders - classification
Voice Disorders - diagnosis
Voice Quality
title Automatic Assessment of Voice Quality According to the GRBAS Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Assessment%20of%20Voice%20Quality%20According%20to%20the%20GRBAS%20Scale&rft.btitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Saenz-Lechon,%20N.&rft.date=2006-01-01&rft.volume=2006&rft.spage=2478&rft.epage=2481&rft.pages=2478-2481&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.260603&rft_dat=%3Cproquest_6IE%3E68359686%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68359686&rft_id=info:pmid/17946516&rft_ieee_id=4462297&rfr_iscdi=true