Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model

In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.1972-1975
Hauptverfasser: Regentova, E., Zhang, L., Zheng, J., Veni, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1975
container_issue
container_start_page 1972
container_title 2006 International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2006
creator Regentova, E.
Zhang, L.
Zheng, J.
Veni, G.
description In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case
doi_str_mv 10.1109/IEMBS.2006.259580
format Article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4462168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4462168</ieee_id><sourcerecordid>68361535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-4d9650116ffed25261a54bde6b64dec713ea29a4a890797c816cd730617c61223</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWBLgGhV-gMQEsrEluLr-BGP0BZaqREDRbBFrn1bGfIocVKJf09Qgbuc4Xw6wyXkEugEgOrb5Ty7f54wSuWECS1SekLGWqXAGeeUJoyfkiEIoWJQ9G1AxiG80_4S3dfsnAxAaS5kKofEzLBF2_pqF2XeNrU1hfVbb03r6ypEvopmfudbU0SZKct615gyRF348a_mgAW20awuTe8W3jmsetZ81Ido3SBGWe2wuCBnW1MEHP_miLw8zNfTRbx6elxO71axZ8DbmDstBQWQ2y06JpgEI_jGodxI7tAqSNAwbbhJNVVa2RSkdSqhEpSVwFgyIjfH3X1Tf3YY2rz0wWJRmArrLuQyTSSIRPTw-hd2mxJdvm98aZqv_O8pPbg6Ao-I_zXnkkE_8g2wF26X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68361535</pqid></control><display><type>article</type><title>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Regentova, E. ; Zhang, L. ; Zheng, J. ; Veni, G.</creator><creatorcontrib>Regentova, E. ; Zhang, L. ; Zheng, J. ; Veni, G.</creatorcontrib><description>In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.259580</identifier><identifier>PMID: 17945686</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Calcinosis - diagnostic imaging ; Cities and towns ; Computer Simulation ; Female ; Hidden Markov models ; Humans ; Image databases ; Image segmentation ; Information Storage and Retrieval - methods ; Mammography - methods ; Markov Chains ; Models, Biological ; Models, Statistical ; Pattern Recognition, Automated - methods ; Precancerous Conditions - diagnostic imaging ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Tree graphs ; USA Councils ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.1972-1975</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4462168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4462168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17945686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Regentova, E.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Zheng, J.</creatorcontrib><creatorcontrib>Veni, G.</creatorcontrib><title>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Calcinosis - diagnostic imaging</subject><subject>Cities and towns</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image segmentation</subject><subject>Information Storage and Retrieval - methods</subject><subject>Mammography - methods</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Precancerous Conditions - diagnostic imaging</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Tree graphs</subject><subject>USA Councils</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWBLgGhV-gMQEsrEluLr-BGP0BZaqREDRbBFrn1bGfIocVKJf09Qgbuc4Xw6wyXkEugEgOrb5Ty7f54wSuWECS1SekLGWqXAGeeUJoyfkiEIoWJQ9G1AxiG80_4S3dfsnAxAaS5kKofEzLBF2_pqF2XeNrU1hfVbb03r6ypEvopmfudbU0SZKct615gyRF348a_mgAW20awuTe8W3jmsetZ81Ido3SBGWe2wuCBnW1MEHP_miLw8zNfTRbx6elxO71axZ8DbmDstBQWQ2y06JpgEI_jGodxI7tAqSNAwbbhJNVVa2RSkdSqhEpSVwFgyIjfH3X1Tf3YY2rz0wWJRmArrLuQyTSSIRPTw-hd2mxJdvm98aZqv_O8pPbg6Ao-I_zXnkkE_8g2wF26X</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Regentova, E.</creator><creator>Zhang, L.</creator><creator>Zheng, J.</creator><creator>Veni, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</title><author>Regentova, E. ; Zhang, L. ; Zheng, J. ; Veni, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-4d9650116ffed25261a54bde6b64dec713ea29a4a890797c816cd730617c61223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Calcinosis - diagnostic imaging</topic><topic>Cities and towns</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image segmentation</topic><topic>Information Storage and Retrieval - methods</topic><topic>Mammography - methods</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Precancerous Conditions - diagnostic imaging</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Tree graphs</topic><topic>USA Councils</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Regentova, E.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Zheng, J.</creatorcontrib><creatorcontrib>Veni, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Regentova, E.</au><au>Zhang, L.</au><au>Zheng, J.</au><au>Veni, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</atitle><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>1972</spage><epage>1975</epage><pages>1972-1975</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17945686</pmid><doi>10.1109/IEMBS.2006.259580</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1557-170X
ispartof 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.1972-1975
issn 1557-170X
language eng
recordid cdi_ieee_primary_4462168
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Artificial Intelligence
Breast cancer
Breast Neoplasms - diagnostic imaging
Calcinosis - diagnostic imaging
Cities and towns
Computer Simulation
Female
Hidden Markov models
Humans
Image databases
Image segmentation
Information Storage and Retrieval - methods
Mammography - methods
Markov Chains
Models, Biological
Models, Statistical
Pattern Recognition, Automated - methods
Precancerous Conditions - diagnostic imaging
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Tree graphs
USA Councils
Wavelet coefficients
Wavelet domain
Wavelet transforms
title Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Microcalcifications%20in%20Digital%20Mammograms%20using%20Wavelet%20Domain%20Hidden%20Markov%20Tree%20Model&rft.jtitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Regentova,%20E.&rft.date=2006&rft.volume=2006&rft.spage=1972&rft.epage=1975&rft.pages=1972-1975&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.259580&rft_dat=%3Cproquest_6IE%3E68361535%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68361535&rft_id=info:pmid/17945686&rft_ieee_id=4462168&rfr_iscdi=true