Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model
In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-s...
Gespeichert in:
Veröffentlicht in: | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.1972-1975 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1975 |
---|---|
container_issue | |
container_start_page | 1972 |
container_title | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | 2006 |
creator | Regentova, E. Zhang, L. Zheng, J. Veni, G. |
description | In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case |
doi_str_mv | 10.1109/IEMBS.2006.259580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4462168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4462168</ieee_id><sourcerecordid>68361535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-4d9650116ffed25261a54bde6b64dec713ea29a4a890797c816cd730617c61223</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWBLgGhV-gMQEsrEluLr-BGP0BZaqREDRbBFrn1bGfIocVKJf09Qgbuc4Xw6wyXkEugEgOrb5Ty7f54wSuWECS1SekLGWqXAGeeUJoyfkiEIoWJQ9G1AxiG80_4S3dfsnAxAaS5kKofEzLBF2_pqF2XeNrU1hfVbb03r6ypEvopmfudbU0SZKct615gyRF348a_mgAW20awuTe8W3jmsetZ81Ido3SBGWe2wuCBnW1MEHP_miLw8zNfTRbx6elxO71axZ8DbmDstBQWQ2y06JpgEI_jGodxI7tAqSNAwbbhJNVVa2RSkdSqhEpSVwFgyIjfH3X1Tf3YY2rz0wWJRmArrLuQyTSSIRPTw-hd2mxJdvm98aZqv_O8pPbg6Ao-I_zXnkkE_8g2wF26X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68361535</pqid></control><display><type>article</type><title>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Regentova, E. ; Zhang, L. ; Zheng, J. ; Veni, G.</creator><creatorcontrib>Regentova, E. ; Zhang, L. ; Zheng, J. ; Veni, G.</creatorcontrib><description>In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.259580</identifier><identifier>PMID: 17945686</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Calcinosis - diagnostic imaging ; Cities and towns ; Computer Simulation ; Female ; Hidden Markov models ; Humans ; Image databases ; Image segmentation ; Information Storage and Retrieval - methods ; Mammography - methods ; Markov Chains ; Models, Biological ; Models, Statistical ; Pattern Recognition, Automated - methods ; Precancerous Conditions - diagnostic imaging ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Tree graphs ; USA Councils ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.1972-1975</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4462168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4462168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17945686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Regentova, E.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Zheng, J.</creatorcontrib><creatorcontrib>Veni, G.</creatorcontrib><title>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Calcinosis - diagnostic imaging</subject><subject>Cities and towns</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image segmentation</subject><subject>Information Storage and Retrieval - methods</subject><subject>Mammography - methods</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Precancerous Conditions - diagnostic imaging</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Tree graphs</subject><subject>USA Councils</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWBLgGhV-gMQEsrEluLr-BGP0BZaqREDRbBFrn1bGfIocVKJf09Qgbuc4Xw6wyXkEugEgOrb5Ty7f54wSuWECS1SekLGWqXAGeeUJoyfkiEIoWJQ9G1AxiG80_4S3dfsnAxAaS5kKofEzLBF2_pqF2XeNrU1hfVbb03r6ypEvopmfudbU0SZKct615gyRF348a_mgAW20awuTe8W3jmsetZ81Ido3SBGWe2wuCBnW1MEHP_miLw8zNfTRbx6elxO71axZ8DbmDstBQWQ2y06JpgEI_jGodxI7tAqSNAwbbhJNVVa2RSkdSqhEpSVwFgyIjfH3X1Tf3YY2rz0wWJRmArrLuQyTSSIRPTw-hd2mxJdvm98aZqv_O8pPbg6Ao-I_zXnkkE_8g2wF26X</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Regentova, E.</creator><creator>Zhang, L.</creator><creator>Zheng, J.</creator><creator>Veni, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</title><author>Regentova, E. ; Zhang, L. ; Zheng, J. ; Veni, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-4d9650116ffed25261a54bde6b64dec713ea29a4a890797c816cd730617c61223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Calcinosis - diagnostic imaging</topic><topic>Cities and towns</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image segmentation</topic><topic>Information Storage and Retrieval - methods</topic><topic>Mammography - methods</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Precancerous Conditions - diagnostic imaging</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Tree graphs</topic><topic>USA Councils</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Regentova, E.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Zheng, J.</creatorcontrib><creatorcontrib>Veni, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Regentova, E.</au><au>Zhang, L.</au><au>Zheng, J.</au><au>Veni, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model</atitle><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>1972</spage><epage>1975</epage><pages>1972-1975</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17945686</pmid><doi>10.1109/IEMBS.2006.259580</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1557-170X |
ispartof | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.2006, p.1972-1975 |
issn | 1557-170X |
language | eng |
recordid | cdi_ieee_primary_4462168 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Artificial Intelligence Breast cancer Breast Neoplasms - diagnostic imaging Calcinosis - diagnostic imaging Cities and towns Computer Simulation Female Hidden Markov models Humans Image databases Image segmentation Information Storage and Retrieval - methods Mammography - methods Markov Chains Models, Biological Models, Statistical Pattern Recognition, Automated - methods Precancerous Conditions - diagnostic imaging Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Tree graphs USA Councils Wavelet coefficients Wavelet domain Wavelet transforms |
title | Detecting Microcalcifications in Digital Mammograms using Wavelet Domain Hidden Markov Tree Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Microcalcifications%20in%20Digital%20Mammograms%20using%20Wavelet%20Domain%20Hidden%20Markov%20Tree%20Model&rft.jtitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Regentova,%20E.&rft.date=2006&rft.volume=2006&rft.spage=1972&rft.epage=1975&rft.pages=1972-1975&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.259580&rft_dat=%3Cproquest_6IE%3E68361535%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68361535&rft_id=info:pmid/17945686&rft_ieee_id=4462168&rfr_iscdi=true |