Using genetic programming for the induction of oblique decision trees

In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programmin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shali, A., Kangavari, M.R., Bina, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 38
container_title
container_volume
creator Shali, A.
Kangavari, M.R.
Bina, B.
description In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.
doi_str_mv 10.1109/ICMLA.2007.66
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4457205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4457205</ieee_id><sourcerecordid>4457205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-c2d5cfc942ccd353e880fa24107eede9721e8426363662220385c71b8d8801ad3</originalsourceid><addsrcrecordid>eNotjD1PwzAURS0hJFDJyMTiP5Dw_G2PVVSgUioWOlep_RKMmqTY6cC_JxXcM1zp6OoS8sigYgzc87beNeuKA5hK6xtSOGPBaKcEaGfuSJHzFyyRijED92Szz3HsaY8jztHTc5r61A7D1XVTovMn0jiGi5_jNNKpo9PxFL8vSAP6mK9uToj5gdx27Slj8d8rsn_ZfNRvZfP-uq3XTRkZqLn0PCjfeSe590EogdZC13LJwCAGdIYztJJrsaA55yCs8oYdbViGrA1iRZ7-fiMiHs4pDm36OUipDAclfgGT70kP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using genetic programming for the induction of oblique decision trees</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shali, A. ; Kangavari, M.R. ; Bina, B.</creator><creatorcontrib>Shali, A. ; Kangavari, M.R. ; Bina, B.</creatorcontrib><description>In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.</description><identifier>ISBN: 9780769530697</identifier><identifier>ISBN: 0769530699</identifier><identifier>DOI: 10.1109/ICMLA.2007.66</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Arithmetic ; Decision trees ; Genetic algorithms ; Genetic engineering ; Genetic programming ; Machine learning ; Machine learning algorithms ; Partitioning algorithms ; Testing</subject><ispartof>Sixth International Conference on Machine Learning and Applications (ICMLA 2007), 2007, p.38-43</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4457205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4457205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shali, A.</creatorcontrib><creatorcontrib>Kangavari, M.R.</creatorcontrib><creatorcontrib>Bina, B.</creatorcontrib><title>Using genetic programming for the induction of oblique decision trees</title><title>Sixth International Conference on Machine Learning and Applications (ICMLA 2007)</title><addtitle>ICMLA</addtitle><description>In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.</description><subject>Application software</subject><subject>Arithmetic</subject><subject>Decision trees</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Genetic programming</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Partitioning algorithms</subject><subject>Testing</subject><isbn>9780769530697</isbn><isbn>0769530699</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjD1PwzAURS0hJFDJyMTiP5Dw_G2PVVSgUioWOlep_RKMmqTY6cC_JxXcM1zp6OoS8sigYgzc87beNeuKA5hK6xtSOGPBaKcEaGfuSJHzFyyRijED92Szz3HsaY8jztHTc5r61A7D1XVTovMn0jiGi5_jNNKpo9PxFL8vSAP6mK9uToj5gdx27Slj8d8rsn_ZfNRvZfP-uq3XTRkZqLn0PCjfeSe590EogdZC13LJwCAGdIYztJJrsaA55yCs8oYdbViGrA1iRZ7-fiMiHs4pDm36OUipDAclfgGT70kP</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Shali, A.</creator><creator>Kangavari, M.R.</creator><creator>Bina, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Using genetic programming for the induction of oblique decision trees</title><author>Shali, A. ; Kangavari, M.R. ; Bina, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-c2d5cfc942ccd353e880fa24107eede9721e8426363662220385c71b8d8801ad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Arithmetic</topic><topic>Decision trees</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Genetic programming</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Partitioning algorithms</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Shali, A.</creatorcontrib><creatorcontrib>Kangavari, M.R.</creatorcontrib><creatorcontrib>Bina, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shali, A.</au><au>Kangavari, M.R.</au><au>Bina, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using genetic programming for the induction of oblique decision trees</atitle><btitle>Sixth International Conference on Machine Learning and Applications (ICMLA 2007)</btitle><stitle>ICMLA</stitle><date>2007-12</date><risdate>2007</risdate><spage>38</spage><epage>43</epage><pages>38-43</pages><isbn>9780769530697</isbn><isbn>0769530699</isbn><abstract>In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICMLA.2007.66</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769530697
ispartof Sixth International Conference on Machine Learning and Applications (ICMLA 2007), 2007, p.38-43
issn
language eng
recordid cdi_ieee_primary_4457205
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Arithmetic
Decision trees
Genetic algorithms
Genetic engineering
Genetic programming
Machine learning
Machine learning algorithms
Partitioning algorithms
Testing
title Using genetic programming for the induction of oblique decision trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20genetic%20programming%20for%20the%20induction%20of%20oblique%20decision%20trees&rft.btitle=Sixth%20International%20Conference%20on%20Machine%20Learning%20and%20Applications%20(ICMLA%202007)&rft.au=Shali,%20A.&rft.date=2007-12&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.isbn=9780769530697&rft.isbn_list=0769530699&rft_id=info:doi/10.1109/ICMLA.2007.66&rft_dat=%3Cieee_6IE%3E4457205%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4457205&rfr_iscdi=true