Suitability of NFC for Medical Device Communication and Power Delivery

Near Field Communications (NFC) is a 13.56 MHz inductively coupled power delivery and communication protocol that extends the ISO 14443 RFID standard. Low cost NFC scanner subsystems are anticipated to be widely incorporated in coming generations of commodity cellular phones. We consider the potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freudenthal, E., Herrera, D., Kautz, F., Natividad, C., Ogrey, A., Sipla, J., Sosa, A., Betancourt, C., Estevez, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue
container_start_page 51
container_title
container_volume
creator Freudenthal, E.
Herrera, D.
Kautz, F.
Natividad, C.
Ogrey, A.
Sipla, J.
Sosa, A.
Betancourt, C.
Estevez, L.
description Near Field Communications (NFC) is a 13.56 MHz inductively coupled power delivery and communication protocol that extends the ISO 14443 RFID standard. Low cost NFC scanner subsystems are anticipated to be widely incorporated in coming generations of commodity cellular phones. We consider the potential of this emerging infrastructure to provide convenient and low cost power distribution and communication channels for a range of medical devices. For example, an NFC device within a cell phone could relay measurements collected from a defibrillator-pacemaker to a monitoring physician, remotely control an insulin pump, or activate an implanted neural simulation system. NFC devices pose similar bio-compatibility challenges to other implanted electronics without requiring the provisioning of battery power to support communication. Furthermore, an NFC communication subsystem's power-independence provides a measure of defense against potential denial-of-service attacks that consume power in order to discharge a capacity-limited power source. The 13.56 MHz band has minimal interaction with human and animal tissues. We conducted several successful proof-of- concept experiments communicating with with ISO 14443 tags implanted at multiple locations within a human cadaver. Magnetic field strength decays with the cube of distance-to- antenna, limiting limits the range of potential eavesdroppers. At present, NFC protocols do not provide an appropriate set of privacy properties for implanted medical applications. However, NFC devices are implemented using embedded general purpose processors and thus only software modifications would be required to support protocol extensions with enhanced privacy.
doi_str_mv 10.1109/EMBSW.2007.4454171
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4454171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4454171</ieee_id><sourcerecordid>4454171</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-58fafe242e2111429ca33f5477f9d4d57a2f0612823ab0ed816382255454e2933</originalsourceid><addsrcrecordid>eNotj19LwzAUxQMiqHNfQF_yBVpzb5K2edS6qrCpsIGPI2tvINI_knaTfnsD7rwc-B04nMPYHYgUQJiH1eZp-5WiEHmqlFaQwwW7AYVKQYaZumLLcfwWUdJEJK5ZtT36yR5866eZD46_VyV3Q-AbanxtW_5MJ18TL4euO_aRTH7oue0b_jn8Uohx608U5lt26Ww70vLsC7arVrvyNVl_vLyVj-vEGzElunDWESokBIirTG2ldFrluTONanRu0YkMsEBpD4KaAjJZIGodrxAaKRfs_r_WE9H-J_jOhnl_fir_ACt5R_o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Suitability of NFC for Medical Device Communication and Power Delivery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Freudenthal, E. ; Herrera, D. ; Kautz, F. ; Natividad, C. ; Ogrey, A. ; Sipla, J. ; Sosa, A. ; Betancourt, C. ; Estevez, L.</creator><creatorcontrib>Freudenthal, E. ; Herrera, D. ; Kautz, F. ; Natividad, C. ; Ogrey, A. ; Sipla, J. ; Sosa, A. ; Betancourt, C. ; Estevez, L.</creatorcontrib><description>Near Field Communications (NFC) is a 13.56 MHz inductively coupled power delivery and communication protocol that extends the ISO 14443 RFID standard. Low cost NFC scanner subsystems are anticipated to be widely incorporated in coming generations of commodity cellular phones. We consider the potential of this emerging infrastructure to provide convenient and low cost power distribution and communication channels for a range of medical devices. For example, an NFC device within a cell phone could relay measurements collected from a defibrillator-pacemaker to a monitoring physician, remotely control an insulin pump, or activate an implanted neural simulation system. NFC devices pose similar bio-compatibility challenges to other implanted electronics without requiring the provisioning of battery power to support communication. Furthermore, an NFC communication subsystem's power-independence provides a measure of defense against potential denial-of-service attacks that consume power in order to discharge a capacity-limited power source. The 13.56 MHz band has minimal interaction with human and animal tissues. We conducted several successful proof-of- concept experiments communicating with with ISO 14443 tags implanted at multiple locations within a human cadaver. Magnetic field strength decays with the cube of distance-to- antenna, limiting limits the range of potential eavesdroppers. At present, NFC protocols do not provide an appropriate set of privacy properties for implanted medical applications. However, NFC devices are implemented using embedded general purpose processors and thus only software modifications would be required to support protocol extensions with enhanced privacy.</description><identifier>ISBN: 1424416264</identifier><identifier>ISBN: 9781424416264</identifier><identifier>DOI: 10.1109/EMBSW.2007.4454171</identifier><language>eng</language><publisher>IEEE</publisher><subject>Battery charge measurement ; Cellular phones ; Communication standards ; Costs ; Humans ; ISO standards ; Power distribution ; Privacy ; Protocols ; Radiofrequency identification</subject><ispartof>2007 IEEE Dallas Engineering in Medicine and Biology Workshop, 2007, p.51-54</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4454171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4454171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Freudenthal, E.</creatorcontrib><creatorcontrib>Herrera, D.</creatorcontrib><creatorcontrib>Kautz, F.</creatorcontrib><creatorcontrib>Natividad, C.</creatorcontrib><creatorcontrib>Ogrey, A.</creatorcontrib><creatorcontrib>Sipla, J.</creatorcontrib><creatorcontrib>Sosa, A.</creatorcontrib><creatorcontrib>Betancourt, C.</creatorcontrib><creatorcontrib>Estevez, L.</creatorcontrib><title>Suitability of NFC for Medical Device Communication and Power Delivery</title><title>2007 IEEE Dallas Engineering in Medicine and Biology Workshop</title><addtitle>EMBSW</addtitle><description>Near Field Communications (NFC) is a 13.56 MHz inductively coupled power delivery and communication protocol that extends the ISO 14443 RFID standard. Low cost NFC scanner subsystems are anticipated to be widely incorporated in coming generations of commodity cellular phones. We consider the potential of this emerging infrastructure to provide convenient and low cost power distribution and communication channels for a range of medical devices. For example, an NFC device within a cell phone could relay measurements collected from a defibrillator-pacemaker to a monitoring physician, remotely control an insulin pump, or activate an implanted neural simulation system. NFC devices pose similar bio-compatibility challenges to other implanted electronics without requiring the provisioning of battery power to support communication. Furthermore, an NFC communication subsystem's power-independence provides a measure of defense against potential denial-of-service attacks that consume power in order to discharge a capacity-limited power source. The 13.56 MHz band has minimal interaction with human and animal tissues. We conducted several successful proof-of- concept experiments communicating with with ISO 14443 tags implanted at multiple locations within a human cadaver. Magnetic field strength decays with the cube of distance-to- antenna, limiting limits the range of potential eavesdroppers. At present, NFC protocols do not provide an appropriate set of privacy properties for implanted medical applications. However, NFC devices are implemented using embedded general purpose processors and thus only software modifications would be required to support protocol extensions with enhanced privacy.</description><subject>Battery charge measurement</subject><subject>Cellular phones</subject><subject>Communication standards</subject><subject>Costs</subject><subject>Humans</subject><subject>ISO standards</subject><subject>Power distribution</subject><subject>Privacy</subject><subject>Protocols</subject><subject>Radiofrequency identification</subject><isbn>1424416264</isbn><isbn>9781424416264</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj19LwzAUxQMiqHNfQF_yBVpzb5K2edS6qrCpsIGPI2tvINI_knaTfnsD7rwc-B04nMPYHYgUQJiH1eZp-5WiEHmqlFaQwwW7AYVKQYaZumLLcfwWUdJEJK5ZtT36yR5866eZD46_VyV3Q-AbanxtW_5MJ18TL4euO_aRTH7oue0b_jn8Uohx608U5lt26Ww70vLsC7arVrvyNVl_vLyVj-vEGzElunDWESokBIirTG2ldFrluTONanRu0YkMsEBpD4KaAjJZIGodrxAaKRfs_r_WE9H-J_jOhnl_fir_ACt5R_o</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Freudenthal, E.</creator><creator>Herrera, D.</creator><creator>Kautz, F.</creator><creator>Natividad, C.</creator><creator>Ogrey, A.</creator><creator>Sipla, J.</creator><creator>Sosa, A.</creator><creator>Betancourt, C.</creator><creator>Estevez, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>Suitability of NFC for Medical Device Communication and Power Delivery</title><author>Freudenthal, E. ; Herrera, D. ; Kautz, F. ; Natividad, C. ; Ogrey, A. ; Sipla, J. ; Sosa, A. ; Betancourt, C. ; Estevez, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-58fafe242e2111429ca33f5477f9d4d57a2f0612823ab0ed816382255454e2933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Battery charge measurement</topic><topic>Cellular phones</topic><topic>Communication standards</topic><topic>Costs</topic><topic>Humans</topic><topic>ISO standards</topic><topic>Power distribution</topic><topic>Privacy</topic><topic>Protocols</topic><topic>Radiofrequency identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Freudenthal, E.</creatorcontrib><creatorcontrib>Herrera, D.</creatorcontrib><creatorcontrib>Kautz, F.</creatorcontrib><creatorcontrib>Natividad, C.</creatorcontrib><creatorcontrib>Ogrey, A.</creatorcontrib><creatorcontrib>Sipla, J.</creatorcontrib><creatorcontrib>Sosa, A.</creatorcontrib><creatorcontrib>Betancourt, C.</creatorcontrib><creatorcontrib>Estevez, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freudenthal, E.</au><au>Herrera, D.</au><au>Kautz, F.</au><au>Natividad, C.</au><au>Ogrey, A.</au><au>Sipla, J.</au><au>Sosa, A.</au><au>Betancourt, C.</au><au>Estevez, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Suitability of NFC for Medical Device Communication and Power Delivery</atitle><btitle>2007 IEEE Dallas Engineering in Medicine and Biology Workshop</btitle><stitle>EMBSW</stitle><date>2007-11</date><risdate>2007</risdate><spage>51</spage><epage>54</epage><pages>51-54</pages><isbn>1424416264</isbn><isbn>9781424416264</isbn><abstract>Near Field Communications (NFC) is a 13.56 MHz inductively coupled power delivery and communication protocol that extends the ISO 14443 RFID standard. Low cost NFC scanner subsystems are anticipated to be widely incorporated in coming generations of commodity cellular phones. We consider the potential of this emerging infrastructure to provide convenient and low cost power distribution and communication channels for a range of medical devices. For example, an NFC device within a cell phone could relay measurements collected from a defibrillator-pacemaker to a monitoring physician, remotely control an insulin pump, or activate an implanted neural simulation system. NFC devices pose similar bio-compatibility challenges to other implanted electronics without requiring the provisioning of battery power to support communication. Furthermore, an NFC communication subsystem's power-independence provides a measure of defense against potential denial-of-service attacks that consume power in order to discharge a capacity-limited power source. The 13.56 MHz band has minimal interaction with human and animal tissues. We conducted several successful proof-of- concept experiments communicating with with ISO 14443 tags implanted at multiple locations within a human cadaver. Magnetic field strength decays with the cube of distance-to- antenna, limiting limits the range of potential eavesdroppers. At present, NFC protocols do not provide an appropriate set of privacy properties for implanted medical applications. However, NFC devices are implemented using embedded general purpose processors and thus only software modifications would be required to support protocol extensions with enhanced privacy.</abstract><pub>IEEE</pub><doi>10.1109/EMBSW.2007.4454171</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424416264
ispartof 2007 IEEE Dallas Engineering in Medicine and Biology Workshop, 2007, p.51-54
issn
language eng
recordid cdi_ieee_primary_4454171
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Battery charge measurement
Cellular phones
Communication standards
Costs
Humans
ISO standards
Power distribution
Privacy
Protocols
Radiofrequency identification
title Suitability of NFC for Medical Device Communication and Power Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Suitability%20of%20NFC%20for%20Medical%20Device%20Communication%20and%20Power%20Delivery&rft.btitle=2007%20IEEE%20Dallas%20Engineering%20in%20Medicine%20and%20Biology%20Workshop&rft.au=Freudenthal,%20E.&rft.date=2007-11&rft.spage=51&rft.epage=54&rft.pages=51-54&rft.isbn=1424416264&rft.isbn_list=9781424416264&rft_id=info:doi/10.1109/EMBSW.2007.4454171&rft_dat=%3Cieee_6IE%3E4454171%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4454171&rfr_iscdi=true