Nonlinear stabilizing control based on particle swarm optimization with controlled mutation

In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ishigame, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue
container_start_page 652
container_title
container_volume
creator Ishigame, A.
description In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.
doi_str_mv 10.1109/ISIC.2007.4450962
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4450962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4450962</ieee_id><sourcerecordid>4450962</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8b96291ac4f208f74f2a062e055c36a3cc8623ffe68a65f7fd05d7204b95d423</originalsourceid><addsrcrecordid>eNpVkEtLAzEcxOMLrLUfQLzkC2z9J5vnURarC0UP9eahZHcTjeyLJFLsp3fRKniaw29mYAahKwJLQkDflJuyWFIAuWSMgxb0CC20VIRRxoAxwo7RjBKuMq2kPvnHQJ7-MQHn6CLGdwAKhMEMvTwOfet7awKOyVS-9Xvfv-J66FMYWlyZaBs89Hg0Ifm6tTjuTOjwMCbf-b1JfmI7n95-E-1k7z7SN7hEZ8600S4OOkeb1d1z8ZCtn-7L4nadeQ0pU9W0RhNTM0dBOTmJAUEtcF7nwuR1rQTNnbNCGcGddA3wRlJgleYNo_kcXf-0emvtdgy-M-Fze3gp_wJzmVjF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear stabilizing control based on particle swarm optimization with controlled mutation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ishigame, A.</creator><creatorcontrib>Ishigame, A.</creatorcontrib><description>In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.</description><identifier>ISSN: 2158-9860</identifier><identifier>ISBN: 9781424404407</identifier><identifier>ISBN: 1424404401</identifier><identifier>EISSN: 2158-9879</identifier><identifier>EISBN: 9781424404414</identifier><identifier>EISBN: 142440441X</identifier><identifier>DOI: 10.1109/ISIC.2007.4450962</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Convergence ; Cost function ; Genetic mutations ; Lyapunov method ; Multi-layer neural network ; Neural networks ; Nonlinear control systems ; Optimization methods ; Particle swarm optimization</subject><ispartof>2007 IEEE 22nd International Symposium on Intelligent Control, 2007, p.652-657</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4450962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4450962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishigame, A.</creatorcontrib><title>Nonlinear stabilizing control based on particle swarm optimization with controlled mutation</title><title>2007 IEEE 22nd International Symposium on Intelligent Control</title><addtitle>ISIC</addtitle><description>In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.</description><subject>Control systems</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Genetic mutations</subject><subject>Lyapunov method</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Optimization methods</subject><subject>Particle swarm optimization</subject><issn>2158-9860</issn><issn>2158-9879</issn><isbn>9781424404407</isbn><isbn>1424404401</isbn><isbn>9781424404414</isbn><isbn>142440441X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLAzEcxOMLrLUfQLzkC2z9J5vnURarC0UP9eahZHcTjeyLJFLsp3fRKniaw29mYAahKwJLQkDflJuyWFIAuWSMgxb0CC20VIRRxoAxwo7RjBKuMq2kPvnHQJ7-MQHn6CLGdwAKhMEMvTwOfet7awKOyVS-9Xvfv-J66FMYWlyZaBs89Hg0Ifm6tTjuTOjwMCbf-b1JfmI7n95-E-1k7z7SN7hEZ8600S4OOkeb1d1z8ZCtn-7L4nadeQ0pU9W0RhNTM0dBOTmJAUEtcF7nwuR1rQTNnbNCGcGddA3wRlJgleYNo_kcXf-0emvtdgy-M-Fze3gp_wJzmVjF</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Ishigame, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Nonlinear stabilizing control based on particle swarm optimization with controlled mutation</title><author>Ishigame, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8b96291ac4f208f74f2a062e055c36a3cc8623ffe68a65f7fd05d7204b95d423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Control systems</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Genetic mutations</topic><topic>Lyapunov method</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Optimization methods</topic><topic>Particle swarm optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishigame, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishigame, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear stabilizing control based on particle swarm optimization with controlled mutation</atitle><btitle>2007 IEEE 22nd International Symposium on Intelligent Control</btitle><stitle>ISIC</stitle><date>2007-10</date><risdate>2007</risdate><spage>652</spage><epage>657</epage><pages>652-657</pages><issn>2158-9860</issn><eissn>2158-9879</eissn><isbn>9781424404407</isbn><isbn>1424404401</isbn><eisbn>9781424404414</eisbn><eisbn>142440441X</eisbn><abstract>In this paper, a new approach based on Particle Swarm Optimization (PSO) and Lyapunov method is presented to construct nonlinear stabilizing controller using a neural network. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary PSO with a controlled mutation that is newly proposed. The PSO is able to generate an optimal set of parameters for neural controller. Then, the proposed neural controller can be satisfied the Lyapunov stability condition and is validated through numerical simulations of stabilizing control problem.</abstract><pub>IEEE</pub><doi>10.1109/ISIC.2007.4450962</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-9860
ispartof 2007 IEEE 22nd International Symposium on Intelligent Control, 2007, p.652-657
issn 2158-9860
2158-9879
language eng
recordid cdi_ieee_primary_4450962
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Convergence
Cost function
Genetic mutations
Lyapunov method
Multi-layer neural network
Neural networks
Nonlinear control systems
Optimization methods
Particle swarm optimization
title Nonlinear stabilizing control based on particle swarm optimization with controlled mutation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20stabilizing%20control%20based%20on%20particle%20swarm%20optimization%20with%20controlled%20mutation&rft.btitle=2007%20IEEE%2022nd%20International%20Symposium%20on%20Intelligent%20Control&rft.au=Ishigame,%20A.&rft.date=2007-10&rft.spage=652&rft.epage=657&rft.pages=652-657&rft.issn=2158-9860&rft.eissn=2158-9879&rft.isbn=9781424404407&rft.isbn_list=1424404401&rft_id=info:doi/10.1109/ISIC.2007.4450962&rft_dat=%3Cieee_6IE%3E4450962%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424404414&rft.eisbn_list=142440441X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4450962&rfr_iscdi=true