An efficient solution for compositional design problems by Multi-stage Genetic Algorithm

The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of subop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suzuki, M., Hiyama, Y., Yamada, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue
container_start_page 626
container_title
container_volume
creator Suzuki, M.
Hiyama, Y.
Yamada, H.
description The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.
doi_str_mv 10.1109/ISIC.2007.4450958
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4450958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4450958</ieee_id><sourcerecordid>4450958</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-233541253b523eeabf6056a6b5d68169dd014627211c57c4807fb19e3b3d758e3</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheMNrLUPIG7yAlP_3JNlKVoHKi7swl2ZzPxTIzOTMkkXfXsVi-DqcPjg43AIuWMwZwzcQ_lWLuccwMylVOCUPSMzZyyTXEqQkslzMuFM2cJZ4y7-MTCXf0zDNblJ6ROAA5MwIe-LgWLbhjrgkGmK3SGHONA2jrSO_T6m8NOrjjaYwm6g-zH6DvtE_ZG-HLocipSrHdIVDphDTRfdLo4hf_S35KqtuoSzU07J5ulxs3wu1q-rcrlYF8FBLrgQSjKuhFdcIFa-1aB0pb1qtGXaNc33TM0NZ6xWppYWTOuZQ-FFY5RFMSX3v9qAiNv9GPpqPG5PH4kvxCFWQg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suzuki, M. ; Hiyama, Y. ; Yamada, H.</creator><creatorcontrib>Suzuki, M. ; Hiyama, Y. ; Yamada, H.</creatorcontrib><description>The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.</description><identifier>ISSN: 2158-9860</identifier><identifier>ISBN: 9781424404407</identifier><identifier>ISBN: 1424404401</identifier><identifier>EISSN: 2158-9879</identifier><identifier>EISBN: 9781424404414</identifier><identifier>EISBN: 142440441X</identifier><identifier>DOI: 10.1109/ISIC.2007.4450958</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Design engineering ; Genetic algorithm ; Genetic algorithms ; Genetic engineering ; Intelligent control ; Large-scale systems ; Learning ; Learning systems ; Optimization ; Optimization methods ; Robots ; Systems engineering and theory</subject><ispartof>2007 IEEE 22nd International Symposium on Intelligent Control, 2007, p.626-633</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4450958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4450958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suzuki, M.</creatorcontrib><creatorcontrib>Hiyama, Y.</creatorcontrib><creatorcontrib>Yamada, H.</creatorcontrib><title>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</title><title>2007 IEEE 22nd International Symposium on Intelligent Control</title><addtitle>ISIC</addtitle><description>The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.</description><subject>Algorithm design and analysis</subject><subject>Design engineering</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Intelligent control</subject><subject>Large-scale systems</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Robots</subject><subject>Systems engineering and theory</subject><issn>2158-9860</issn><issn>2158-9879</issn><isbn>9781424404407</isbn><isbn>1424404401</isbn><isbn>9781424404414</isbn><isbn>142440441X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheMNrLUPIG7yAlP_3JNlKVoHKi7swl2ZzPxTIzOTMkkXfXsVi-DqcPjg43AIuWMwZwzcQ_lWLuccwMylVOCUPSMzZyyTXEqQkslzMuFM2cJZ4y7-MTCXf0zDNblJ6ROAA5MwIe-LgWLbhjrgkGmK3SGHONA2jrSO_T6m8NOrjjaYwm6g-zH6DvtE_ZG-HLocipSrHdIVDphDTRfdLo4hf_S35KqtuoSzU07J5ulxs3wu1q-rcrlYF8FBLrgQSjKuhFdcIFa-1aB0pb1qtGXaNc33TM0NZ6xWppYWTOuZQ-FFY5RFMSX3v9qAiNv9GPpqPG5PH4kvxCFWQg</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Suzuki, M.</creator><creator>Hiyama, Y.</creator><creator>Yamada, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</title><author>Suzuki, M. ; Hiyama, Y. ; Yamada, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-233541253b523eeabf6056a6b5d68169dd014627211c57c4807fb19e3b3d758e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Design engineering</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Intelligent control</topic><topic>Large-scale systems</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Robots</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, M.</creatorcontrib><creatorcontrib>Hiyama, Y.</creatorcontrib><creatorcontrib>Yamada, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suzuki, M.</au><au>Hiyama, Y.</au><au>Yamada, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</atitle><btitle>2007 IEEE 22nd International Symposium on Intelligent Control</btitle><stitle>ISIC</stitle><date>2007-10</date><risdate>2007</risdate><spage>626</spage><epage>633</epage><pages>626-633</pages><issn>2158-9860</issn><eissn>2158-9879</eissn><isbn>9781424404407</isbn><isbn>1424404401</isbn><eisbn>9781424404414</eisbn><eisbn>142440441X</eisbn><abstract>The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.</abstract><pub>IEEE</pub><doi>10.1109/ISIC.2007.4450958</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-9860
ispartof 2007 IEEE 22nd International Symposium on Intelligent Control, 2007, p.626-633
issn 2158-9860
2158-9879
language eng
recordid cdi_ieee_primary_4450958
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Design engineering
Genetic algorithm
Genetic algorithms
Genetic engineering
Intelligent control
Large-scale systems
Learning
Learning systems
Optimization
Optimization methods
Robots
Systems engineering and theory
title An efficient solution for compositional design problems by Multi-stage Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20solution%20for%20compositional%20design%20problems%20by%20Multi-stage%20Genetic%20Algorithm&rft.btitle=2007%20IEEE%2022nd%20International%20Symposium%20on%20Intelligent%20Control&rft.au=Suzuki,%20M.&rft.date=2007-10&rft.spage=626&rft.epage=633&rft.pages=626-633&rft.issn=2158-9860&rft.eissn=2158-9879&rft.isbn=9781424404407&rft.isbn_list=1424404401&rft_id=info:doi/10.1109/ISIC.2007.4450958&rft_dat=%3Cieee_6IE%3E4450958%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424404414&rft.eisbn_list=142440441X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4450958&rfr_iscdi=true