An efficient solution for compositional design problems by Multi-stage Genetic Algorithm
The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of subop...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 633 |
---|---|
container_issue | |
container_start_page | 626 |
container_title | |
container_volume | |
creator | Suzuki, M. Hiyama, Y. Yamada, H. |
description | The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors. |
doi_str_mv | 10.1109/ISIC.2007.4450958 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4450958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4450958</ieee_id><sourcerecordid>4450958</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-233541253b523eeabf6056a6b5d68169dd014627211c57c4807fb19e3b3d758e3</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheMNrLUPIG7yAlP_3JNlKVoHKi7swl2ZzPxTIzOTMkkXfXsVi-DqcPjg43AIuWMwZwzcQ_lWLuccwMylVOCUPSMzZyyTXEqQkslzMuFM2cJZ4y7-MTCXf0zDNblJ6ROAA5MwIe-LgWLbhjrgkGmK3SGHONA2jrSO_T6m8NOrjjaYwm6g-zH6DvtE_ZG-HLocipSrHdIVDphDTRfdLo4hf_S35KqtuoSzU07J5ulxs3wu1q-rcrlYF8FBLrgQSjKuhFdcIFa-1aB0pb1qtGXaNc33TM0NZ6xWppYWTOuZQ-FFY5RFMSX3v9qAiNv9GPpqPG5PH4kvxCFWQg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suzuki, M. ; Hiyama, Y. ; Yamada, H.</creator><creatorcontrib>Suzuki, M. ; Hiyama, Y. ; Yamada, H.</creatorcontrib><description>The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.</description><identifier>ISSN: 2158-9860</identifier><identifier>ISBN: 9781424404407</identifier><identifier>ISBN: 1424404401</identifier><identifier>EISSN: 2158-9879</identifier><identifier>EISBN: 9781424404414</identifier><identifier>EISBN: 142440441X</identifier><identifier>DOI: 10.1109/ISIC.2007.4450958</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Design engineering ; Genetic algorithm ; Genetic algorithms ; Genetic engineering ; Intelligent control ; Large-scale systems ; Learning ; Learning systems ; Optimization ; Optimization methods ; Robots ; Systems engineering and theory</subject><ispartof>2007 IEEE 22nd International Symposium on Intelligent Control, 2007, p.626-633</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4450958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4450958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suzuki, M.</creatorcontrib><creatorcontrib>Hiyama, Y.</creatorcontrib><creatorcontrib>Yamada, H.</creatorcontrib><title>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</title><title>2007 IEEE 22nd International Symposium on Intelligent Control</title><addtitle>ISIC</addtitle><description>The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.</description><subject>Algorithm design and analysis</subject><subject>Design engineering</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Intelligent control</subject><subject>Large-scale systems</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Robots</subject><subject>Systems engineering and theory</subject><issn>2158-9860</issn><issn>2158-9879</issn><isbn>9781424404407</isbn><isbn>1424404401</isbn><isbn>9781424404414</isbn><isbn>142440441X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheMNrLUPIG7yAlP_3JNlKVoHKi7swl2ZzPxTIzOTMkkXfXsVi-DqcPjg43AIuWMwZwzcQ_lWLuccwMylVOCUPSMzZyyTXEqQkslzMuFM2cJZ4y7-MTCXf0zDNblJ6ROAA5MwIe-LgWLbhjrgkGmK3SGHONA2jrSO_T6m8NOrjjaYwm6g-zH6DvtE_ZG-HLocipSrHdIVDphDTRfdLo4hf_S35KqtuoSzU07J5ulxs3wu1q-rcrlYF8FBLrgQSjKuhFdcIFa-1aB0pb1qtGXaNc33TM0NZ6xWppYWTOuZQ-FFY5RFMSX3v9qAiNv9GPpqPG5PH4kvxCFWQg</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Suzuki, M.</creator><creator>Hiyama, Y.</creator><creator>Yamada, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</title><author>Suzuki, M. ; Hiyama, Y. ; Yamada, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-233541253b523eeabf6056a6b5d68169dd014627211c57c4807fb19e3b3d758e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Design engineering</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Intelligent control</topic><topic>Large-scale systems</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Robots</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, M.</creatorcontrib><creatorcontrib>Hiyama, Y.</creatorcontrib><creatorcontrib>Yamada, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suzuki, M.</au><au>Hiyama, Y.</au><au>Yamada, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient solution for compositional design problems by Multi-stage Genetic Algorithm</atitle><btitle>2007 IEEE 22nd International Symposium on Intelligent Control</btitle><stitle>ISIC</stitle><date>2007-10</date><risdate>2007</risdate><spage>626</spage><epage>633</epage><pages>626-633</pages><issn>2158-9860</issn><eissn>2158-9879</eissn><isbn>9781424404407</isbn><isbn>1424404401</isbn><eisbn>9781424404414</eisbn><eisbn>142440441X</eisbn><abstract>The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.</abstract><pub>IEEE</pub><doi>10.1109/ISIC.2007.4450958</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-9860 |
ispartof | 2007 IEEE 22nd International Symposium on Intelligent Control, 2007, p.626-633 |
issn | 2158-9860 2158-9879 |
language | eng |
recordid | cdi_ieee_primary_4450958 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Design engineering Genetic algorithm Genetic algorithms Genetic engineering Intelligent control Large-scale systems Learning Learning systems Optimization Optimization methods Robots Systems engineering and theory |
title | An efficient solution for compositional design problems by Multi-stage Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20solution%20for%20compositional%20design%20problems%20by%20Multi-stage%20Genetic%20Algorithm&rft.btitle=2007%20IEEE%2022nd%20International%20Symposium%20on%20Intelligent%20Control&rft.au=Suzuki,%20M.&rft.date=2007-10&rft.spage=626&rft.epage=633&rft.pages=626-633&rft.issn=2158-9860&rft.eissn=2158-9879&rft.isbn=9781424404407&rft.isbn_list=1424404401&rft_id=info:doi/10.1109/ISIC.2007.4450958&rft_dat=%3Cieee_6IE%3E4450958%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424404414&rft.eisbn_list=142440441X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4450958&rfr_iscdi=true |