A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures

We present a new analytical direct parameter-extraction methodology for obtaining the small-signal equivalent circuit of HBTs. It is applied to cryogenically operated SiGe HBTs as a means to allow circuit design of SiGe HBT low-noise amplifiers for cooled radio astronomy applications. We split the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2008-03, Vol.56 (3), p.568-574
Hauptverfasser: Olvera-Cervantes, J.-L., Cressler, J.D., Medina-Monroy, J.-L., Thrivikraman, T., Banerjee, B., Laskar, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 3
container_start_page 568
container_title IEEE transactions on microwave theory and techniques
container_volume 56
creator Olvera-Cervantes, J.-L.
Cressler, J.D.
Medina-Monroy, J.-L.
Thrivikraman, T.
Banerjee, B.
Laskar, J.
description We present a new analytical direct parameter-extraction methodology for obtaining the small-signal equivalent circuit of HBTs. It is applied to cryogenically operated SiGe HBTs as a means to allow circuit design of SiGe HBT low-noise amplifiers for cooled radio astronomy applications. We split the transistor into an intrinsic transistor (IT) piece modeled as a Pi-topology, and the quasi-intrinsic transistor (QIT), obtained from the IT after that the base resistance (R b ) has been removed. The relations between Z-Y-parameters of the IT and QIT are then established, allowing us to propose a new methodology for determining R b . The present extraction method differs from previous studies in that each of the model elements are obtained from exact equations that do not require any approximations, numerical optimization, or post-processing. The validity of this new extraction methodology is demonstrated by applying it to third-generation SiGe HBTs operating at liquid-nitrogen temperature (77 K) across the frequency range of 2-22 GHz.
doi_str_mv 10.1109/TMTT.2008.916917
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4449067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4449067</ieee_id><sourcerecordid>34504400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1da4fcaa0709e439676ab6c5b7a565809a47bfa9f19f6df7a170abb388d32343</originalsourceid><addsrcrecordid>eNp9kUFv0zAYhi0EEmVwR-JiIcFOKZ8TJ7aPpeo2pI1JNPfoi2t3ntK4sx2gf4DfjbtOO3DgZFnf876yv4eQ9wzmjIH60t607bwEkHPFGsXECzJjdS0K1Qh4SWYATBaKS3hN3sR4n6-8Bjkjfxb0u_lFFyMOh-Q0DvTGpDu_odYH-sP3U0x09TsF1Mn5kXpL052h6x0OQ7F22xyjq4fJ_cTBjIkuXdCTS4_htbs09OprG-nt3gRMbtxSzEg4-K0Znaat2T0OpmDiW_LK4hDNu6fzjLQXq3Z5VVzfXn5bLq4LXSqZCrZBbjUiCFCGV_lvDfaNrnuBdVNLUMhFb1FZpmyzsQKZAOz7SspNVVa8OiPnp9p98A-TianbuajNMOBo_BQ7KWrgDVMsk5__S1Z5fZwDZPDjP-C9n0LeS25rSiahqmSG4ATp4GMMxnb74HYYDh2D7qivO-rrjvq6k74c-fTUizFrsQFH7eJzrsw-ZX5p5j6cOGeMeR5zzhU0ovoLU8Sjnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862180338</pqid></control><display><type>article</type><title>A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures</title><source>IEEE Electronic Library (IEL)</source><creator>Olvera-Cervantes, J.-L. ; Cressler, J.D. ; Medina-Monroy, J.-L. ; Thrivikraman, T. ; Banerjee, B. ; Laskar, J.</creator><creatorcontrib>Olvera-Cervantes, J.-L. ; Cressler, J.D. ; Medina-Monroy, J.-L. ; Thrivikraman, T. ; Banerjee, B. ; Laskar, J.</creatorcontrib><description>We present a new analytical direct parameter-extraction methodology for obtaining the small-signal equivalent circuit of HBTs. It is applied to cryogenically operated SiGe HBTs as a means to allow circuit design of SiGe HBT low-noise amplifiers for cooled radio astronomy applications. We split the transistor into an intrinsic transistor (IT) piece modeled as a Pi-topology, and the quasi-intrinsic transistor (QIT), obtained from the IT after that the base resistance (R b ) has been removed. The relations between Z-Y-parameters of the IT and QIT are then established, allowing us to propose a new methodology for determining R b . The present extraction method differs from previous studies in that each of the model elements are obtained from exact equations that do not require any approximations, numerical optimization, or post-processing. The validity of this new extraction methodology is demonstrated by applying it to third-generation SiGe HBTs operating at liquid-nitrogen temperature (77 K) across the frequency range of 2-22 GHz.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2008.916917</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Base resistance ; Circuit properties ; Circuit synthesis ; cryogenic electronics ; Cryogenics ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Equivalent circuits ; Exact sciences and technology ; Extraction ; Germanium silicon alloys ; Heterojunction bipolar transistors ; Information technology ; Low-noise amplifiers ; Mathematical analysis ; Mathematical models ; Methodology ; Microwave and submillimeter wave devices, electron transfer devices ; microwave SiGe HBTs ; Radio astronomy ; Robustness ; S -parameters ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon germanides ; Silicon germanium ; small-signal equivalent circuit ; Studies ; Temperature ; Transistors</subject><ispartof>IEEE transactions on microwave theory and techniques, 2008-03, Vol.56 (3), p.568-574</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-1da4fcaa0709e439676ab6c5b7a565809a47bfa9f19f6df7a170abb388d32343</citedby><cites>FETCH-LOGICAL-c298t-1da4fcaa0709e439676ab6c5b7a565809a47bfa9f19f6df7a170abb388d32343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4449067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4449067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20188619$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Olvera-Cervantes, J.-L.</creatorcontrib><creatorcontrib>Cressler, J.D.</creatorcontrib><creatorcontrib>Medina-Monroy, J.-L.</creatorcontrib><creatorcontrib>Thrivikraman, T.</creatorcontrib><creatorcontrib>Banerjee, B.</creatorcontrib><creatorcontrib>Laskar, J.</creatorcontrib><title>A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>We present a new analytical direct parameter-extraction methodology for obtaining the small-signal equivalent circuit of HBTs. It is applied to cryogenically operated SiGe HBTs as a means to allow circuit design of SiGe HBT low-noise amplifiers for cooled radio astronomy applications. We split the transistor into an intrinsic transistor (IT) piece modeled as a Pi-topology, and the quasi-intrinsic transistor (QIT), obtained from the IT after that the base resistance (R b ) has been removed. The relations between Z-Y-parameters of the IT and QIT are then established, allowing us to propose a new methodology for determining R b . The present extraction method differs from previous studies in that each of the model elements are obtained from exact equations that do not require any approximations, numerical optimization, or post-processing. The validity of this new extraction methodology is demonstrated by applying it to third-generation SiGe HBTs operating at liquid-nitrogen temperature (77 K) across the frequency range of 2-22 GHz.</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Base resistance</subject><subject>Circuit properties</subject><subject>Circuit synthesis</subject><subject>cryogenic electronics</subject><subject>Cryogenics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Equivalent circuits</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Germanium silicon alloys</subject><subject>Heterojunction bipolar transistors</subject><subject>Information technology</subject><subject>Low-noise amplifiers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>microwave SiGe HBTs</subject><subject>Radio astronomy</subject><subject>Robustness</subject><subject>S -parameters</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>small-signal equivalent circuit</subject><subject>Studies</subject><subject>Temperature</subject><subject>Transistors</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFv0zAYhi0EEmVwR-JiIcFOKZ8TJ7aPpeo2pI1JNPfoi2t3ntK4sx2gf4DfjbtOO3DgZFnf876yv4eQ9wzmjIH60t607bwEkHPFGsXECzJjdS0K1Qh4SWYATBaKS3hN3sR4n6-8Bjkjfxb0u_lFFyMOh-Q0DvTGpDu_odYH-sP3U0x09TsF1Mn5kXpL052h6x0OQ7F22xyjq4fJ_cTBjIkuXdCTS4_htbs09OprG-nt3gRMbtxSzEg4-K0Znaat2T0OpmDiW_LK4hDNu6fzjLQXq3Z5VVzfXn5bLq4LXSqZCrZBbjUiCFCGV_lvDfaNrnuBdVNLUMhFb1FZpmyzsQKZAOz7SspNVVa8OiPnp9p98A-TianbuajNMOBo_BQ7KWrgDVMsk5__S1Z5fZwDZPDjP-C9n0LeS25rSiahqmSG4ATp4GMMxnb74HYYDh2D7qivO-rrjvq6k74c-fTUizFrsQFH7eJzrsw-ZX5p5j6cOGeMeR5zzhU0ovoLU8Sjnw</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Olvera-Cervantes, J.-L.</creator><creator>Cressler, J.D.</creator><creator>Medina-Monroy, J.-L.</creator><creator>Thrivikraman, T.</creator><creator>Banerjee, B.</creator><creator>Laskar, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200803</creationdate><title>A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures</title><author>Olvera-Cervantes, J.-L. ; Cressler, J.D. ; Medina-Monroy, J.-L. ; Thrivikraman, T. ; Banerjee, B. ; Laskar, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1da4fcaa0709e439676ab6c5b7a565809a47bfa9f19f6df7a170abb388d32343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Base resistance</topic><topic>Circuit properties</topic><topic>Circuit synthesis</topic><topic>cryogenic electronics</topic><topic>Cryogenics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Equivalent circuits</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Germanium silicon alloys</topic><topic>Heterojunction bipolar transistors</topic><topic>Information technology</topic><topic>Low-noise amplifiers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>microwave SiGe HBTs</topic><topic>Radio astronomy</topic><topic>Robustness</topic><topic>S -parameters</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>small-signal equivalent circuit</topic><topic>Studies</topic><topic>Temperature</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olvera-Cervantes, J.-L.</creatorcontrib><creatorcontrib>Cressler, J.D.</creatorcontrib><creatorcontrib>Medina-Monroy, J.-L.</creatorcontrib><creatorcontrib>Thrivikraman, T.</creatorcontrib><creatorcontrib>Banerjee, B.</creatorcontrib><creatorcontrib>Laskar, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olvera-Cervantes, J.-L.</au><au>Cressler, J.D.</au><au>Medina-Monroy, J.-L.</au><au>Thrivikraman, T.</au><au>Banerjee, B.</au><au>Laskar, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2008-03</date><risdate>2008</risdate><volume>56</volume><issue>3</issue><spage>568</spage><epage>574</epage><pages>568-574</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>We present a new analytical direct parameter-extraction methodology for obtaining the small-signal equivalent circuit of HBTs. It is applied to cryogenically operated SiGe HBTs as a means to allow circuit design of SiGe HBT low-noise amplifiers for cooled radio astronomy applications. We split the transistor into an intrinsic transistor (IT) piece modeled as a Pi-topology, and the quasi-intrinsic transistor (QIT), obtained from the IT after that the base resistance (R b ) has been removed. The relations between Z-Y-parameters of the IT and QIT are then established, allowing us to propose a new methodology for determining R b . The present extraction method differs from previous studies in that each of the model elements are obtained from exact equations that do not require any approximations, numerical optimization, or post-processing. The validity of this new extraction methodology is demonstrated by applying it to third-generation SiGe HBTs operating at liquid-nitrogen temperature (77 K) across the frequency range of 2-22 GHz.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2008.916917</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2008-03, Vol.56 (3), p.568-574
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_4449067
source IEEE Electronic Library (IEL)
subjects Amplifiers
Applied sciences
Base resistance
Circuit properties
Circuit synthesis
cryogenic electronics
Cryogenics
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Equivalent circuits
Exact sciences and technology
Extraction
Germanium silicon alloys
Heterojunction bipolar transistors
Information technology
Low-noise amplifiers
Mathematical analysis
Mathematical models
Methodology
Microwave and submillimeter wave devices, electron transfer devices
microwave SiGe HBTs
Radio astronomy
Robustness
S -parameters
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon germanides
Silicon germanium
small-signal equivalent circuit
Studies
Temperature
Transistors
title A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Analytical%20Method%20for%20Robust%20Extraction%20of%20the%20Small-Signal%20Equivalent%20Circuit%20for%20SiGe%20HBTs%20Operating%20at%20Cryogenic%20Temperatures&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Olvera-Cervantes,%20J.-L.&rft.date=2008-03&rft.volume=56&rft.issue=3&rft.spage=568&rft.epage=574&rft.pages=568-574&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2008.916917&rft_dat=%3Cproquest_RIE%3E34504400%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862180338&rft_id=info:pmid/&rft_ieee_id=4449067&rfr_iscdi=true