Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments
Optimal power flow (OPF) problem has already been attempted as a static optimization problem, by adopting conventional gradient-based methods and more recently, nonconventional ones, such as evolutionary algorithms. However, as the loads, generation capacities and network connections in a power syst...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2008-09, Vol.55 (8), p.2433-2442 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2442 |
---|---|
container_issue | 8 |
container_start_page | 2433 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 55 |
creator | Tang, W.J. Li, M.S. Wu, Q.H. Saunders, J.R. |
description | Optimal power flow (OPF) problem has already been attempted as a static optimization problem, by adopting conventional gradient-based methods and more recently, nonconventional ones, such as evolutionary algorithms. However, as the loads, generation capacities and network connections in a power system are always in a changing status, these static-oriented methods are of limited use for this issue. This paper presents a new algorithm, dynamic bacterial foraging algorithm (DBFA), for solving an OPF problem in a dynamic environment in which system loads are changing. DBFA is based on the recently proposed BFA which mimics the basic foraging behavior of E. coli bacteria. A selection scheme for bacteria's reproduction is employed in DBFA, which explores the self-adaptability of each bacterium in the group searching activities. DBFA has been evaluated, for optimizing the power system fuel cost with the OPF embedded, on the standard IEEE 30-bus and 118-bus test systems, respectively, with a range of load changes which occurred in different probabilities. The simulation results show that DBFA can more rapidly adapt to load changes, and more closely trace the global optimum of the system fuel cost, in comparison with BFA and particle swarm optimizer. |
doi_str_mv | 10.1109/TCSI.2008.918131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4447936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4447936</ieee_id><sourcerecordid>20770629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-86198d4d3995918a5bbd23e5b4efdbf6eeea5718723465f05dd7c50bd76010d83</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxSMEEqWwI7FEDGwp56_EHktpoaJSkSizlQ-nuErsYqdU_e9xVMTAwnQn3e9O792LomsEI4RA3K8mb_MRBuAjgTgi6CQaIMZ4AhzS076nIuEE8_PowvsNABZA0CB6ecjLTjmdN_HMunytzToeN2vrdPfRxrV18XLb6TaMX-1euXjW2H2sTfx4MHmry3hqvrSzplWm85fRWZ03Xl391GH0PpuuJs_JYvk0n4wXSUkY7hKeIsErWhEhWNCas6KoMFGsoKquijpVSuUsQzzDhKasBlZVWcmgqLIUEFScDKO7492ts5875TvZal-qpsmNsjsvCaUZYpj8C2LIMkixCODtH3Bjd84EE5KnJOjgggYIjlDprPdO1XLrwmfcQSKQfQayz0D2GchjBmHl5riig6lfnAZ9gqTkG8n4gZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863234894</pqid></control><display><type>article</type><title>Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, W.J. ; Li, M.S. ; Wu, Q.H. ; Saunders, J.R.</creator><creatorcontrib>Tang, W.J. ; Li, M.S. ; Wu, Q.H. ; Saunders, J.R.</creatorcontrib><description>Optimal power flow (OPF) problem has already been attempted as a static optimization problem, by adopting conventional gradient-based methods and more recently, nonconventional ones, such as evolutionary algorithms. However, as the loads, generation capacities and network connections in a power system are always in a changing status, these static-oriented methods are of limited use for this issue. This paper presents a new algorithm, dynamic bacterial foraging algorithm (DBFA), for solving an OPF problem in a dynamic environment in which system loads are changing. DBFA is based on the recently proposed BFA which mimics the basic foraging behavior of E. coli bacteria. A selection scheme for bacteria's reproduction is employed in DBFA, which explores the self-adaptability of each bacterium in the group searching activities. DBFA has been evaluated, for optimizing the power system fuel cost with the OPF embedded, on the standard IEEE 30-bus and 118-bus test systems, respectively, with a range of load changes which occurred in different probabilities. The simulation results show that DBFA can more rapidly adapt to load changes, and more closely trace the global optimum of the system fuel cost, in comparison with BFA and particle swarm optimizer.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2008.918131</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bacterial foraging algorithm (BFA) ; Cost function ; dynamic optimization ; E coli ; Escherichia coli ; Evolutionary computation ; Fuels ; Heuristic algorithms ; Load flow ; Microorganisms ; optimal power flow (OPF) ; Optimization methods ; Power generation ; Power system dynamics ; Power system simulation ; Studies</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2008-09, Vol.55 (8), p.2433-2442</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-86198d4d3995918a5bbd23e5b4efdbf6eeea5718723465f05dd7c50bd76010d83</citedby><cites>FETCH-LOGICAL-c352t-86198d4d3995918a5bbd23e5b4efdbf6eeea5718723465f05dd7c50bd76010d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4447936$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4447936$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, W.J.</creatorcontrib><creatorcontrib>Li, M.S.</creatorcontrib><creatorcontrib>Wu, Q.H.</creatorcontrib><creatorcontrib>Saunders, J.R.</creatorcontrib><title>Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Optimal power flow (OPF) problem has already been attempted as a static optimization problem, by adopting conventional gradient-based methods and more recently, nonconventional ones, such as evolutionary algorithms. However, as the loads, generation capacities and network connections in a power system are always in a changing status, these static-oriented methods are of limited use for this issue. This paper presents a new algorithm, dynamic bacterial foraging algorithm (DBFA), for solving an OPF problem in a dynamic environment in which system loads are changing. DBFA is based on the recently proposed BFA which mimics the basic foraging behavior of E. coli bacteria. A selection scheme for bacteria's reproduction is employed in DBFA, which explores the self-adaptability of each bacterium in the group searching activities. DBFA has been evaluated, for optimizing the power system fuel cost with the OPF embedded, on the standard IEEE 30-bus and 118-bus test systems, respectively, with a range of load changes which occurred in different probabilities. The simulation results show that DBFA can more rapidly adapt to load changes, and more closely trace the global optimum of the system fuel cost, in comparison with BFA and particle swarm optimizer.</description><subject>Algorithms</subject><subject>Bacterial foraging algorithm (BFA)</subject><subject>Cost function</subject><subject>dynamic optimization</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Evolutionary computation</subject><subject>Fuels</subject><subject>Heuristic algorithms</subject><subject>Load flow</subject><subject>Microorganisms</subject><subject>optimal power flow (OPF)</subject><subject>Optimization methods</subject><subject>Power generation</subject><subject>Power system dynamics</subject><subject>Power system simulation</subject><subject>Studies</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkb1PwzAQxSMEEqWwI7FEDGwp56_EHktpoaJSkSizlQ-nuErsYqdU_e9xVMTAwnQn3e9O792LomsEI4RA3K8mb_MRBuAjgTgi6CQaIMZ4AhzS076nIuEE8_PowvsNABZA0CB6ecjLTjmdN_HMunytzToeN2vrdPfRxrV18XLb6TaMX-1euXjW2H2sTfx4MHmry3hqvrSzplWm85fRWZ03Xl391GH0PpuuJs_JYvk0n4wXSUkY7hKeIsErWhEhWNCas6KoMFGsoKquijpVSuUsQzzDhKasBlZVWcmgqLIUEFScDKO7492ts5875TvZal-qpsmNsjsvCaUZYpj8C2LIMkixCODtH3Bjd84EE5KnJOjgggYIjlDprPdO1XLrwmfcQSKQfQayz0D2GchjBmHl5riig6lfnAZ9gqTkG8n4gZI</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Tang, W.J.</creator><creator>Li, M.S.</creator><creator>Wu, Q.H.</creator><creator>Saunders, J.R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QL</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20080901</creationdate><title>Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments</title><author>Tang, W.J. ; Li, M.S. ; Wu, Q.H. ; Saunders, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-86198d4d3995918a5bbd23e5b4efdbf6eeea5718723465f05dd7c50bd76010d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Bacterial foraging algorithm (BFA)</topic><topic>Cost function</topic><topic>dynamic optimization</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Evolutionary computation</topic><topic>Fuels</topic><topic>Heuristic algorithms</topic><topic>Load flow</topic><topic>Microorganisms</topic><topic>optimal power flow (OPF)</topic><topic>Optimization methods</topic><topic>Power generation</topic><topic>Power system dynamics</topic><topic>Power system simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, W.J.</creatorcontrib><creatorcontrib>Li, M.S.</creatorcontrib><creatorcontrib>Wu, Q.H.</creatorcontrib><creatorcontrib>Saunders, J.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, W.J.</au><au>Li, M.S.</au><au>Wu, Q.H.</au><au>Saunders, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>55</volume><issue>8</issue><spage>2433</spage><epage>2442</epage><pages>2433-2442</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Optimal power flow (OPF) problem has already been attempted as a static optimization problem, by adopting conventional gradient-based methods and more recently, nonconventional ones, such as evolutionary algorithms. However, as the loads, generation capacities and network connections in a power system are always in a changing status, these static-oriented methods are of limited use for this issue. This paper presents a new algorithm, dynamic bacterial foraging algorithm (DBFA), for solving an OPF problem in a dynamic environment in which system loads are changing. DBFA is based on the recently proposed BFA which mimics the basic foraging behavior of E. coli bacteria. A selection scheme for bacteria's reproduction is employed in DBFA, which explores the self-adaptability of each bacterium in the group searching activities. DBFA has been evaluated, for optimizing the power system fuel cost with the OPF embedded, on the standard IEEE 30-bus and 118-bus test systems, respectively, with a range of load changes which occurred in different probabilities. The simulation results show that DBFA can more rapidly adapt to load changes, and more closely trace the global optimum of the system fuel cost, in comparison with BFA and particle swarm optimizer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2008.918131</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2008-09, Vol.55 (8), p.2433-2442 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_4447936 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bacterial foraging algorithm (BFA) Cost function dynamic optimization E coli Escherichia coli Evolutionary computation Fuels Heuristic algorithms Load flow Microorganisms optimal power flow (OPF) Optimization methods Power generation Power system dynamics Power system simulation Studies |
title | Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Foraging%20Algorithm%20for%20Optimal%20Power%20Flow%20in%20Dynamic%20Environments&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Tang,%20W.J.&rft.date=2008-09-01&rft.volume=55&rft.issue=8&rft.spage=2433&rft.epage=2442&rft.pages=2433-2442&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2008.918131&rft_dat=%3Cproquest_RIE%3E20770629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863234894&rft_id=info:pmid/&rft_ieee_id=4447936&rfr_iscdi=true |