Feature Extraction for Multi-class BCI using Canonical Variates Analysis

To propose a new feature extraction method with canonical solution for multi-class brain-computer interfaces (BCI). The proposed method should provide a reduced number of canonical discriminant spatial patterns (CDSP) and rank the channels sorted by power discriminability (DP) between classes. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Galan, Ferran, Ferrez, Pierre. W., Oliva, Francesc, Guardia, Joan, del R. Millan, Jose
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Galan, Ferran
Ferrez, Pierre. W.
Oliva, Francesc
Guardia, Joan
del R. Millan, Jose
description To propose a new feature extraction method with canonical solution for multi-class brain-computer interfaces (BCI). The proposed method should provide a reduced number of canonical discriminant spatial patterns (CDSP) and rank the channels sorted by power discriminability (DP) between classes. The feature extractor relays in canonical variates analysis (CVA) which provides the CDSP between the classes. The number of CDSP is equal to the number of classes minus one. We analyze EEG data recorded with 64 electrodes from 4 subjects recorded in 20 sessions. They were asked to execute twice in each session three different mental tasks (left hand imagination movement, rest, and words association) during 7 seconds. A ranking of electrodes sorted by power discriminability between classes and the CDSP were computed. After splitting data in training and test sets, we compared the classification accuracy achieved by linear discriminant analysis (LDA) in frequency and temporal domains. The average LDA classification accuracies over the four subjects using CVA on both domains are equivalent (57.89% in frequency domain and 59.43% in temporal domain). These results, in terms of classification accuracies, are also reflected in the similarity between the ranking of relevant channels in both domains. CVA is a simple feature extractor with canonical solution useful for multi-class BCI applications that can work on temporal or frequency domain.
doi_str_mv 10.1109/WISP.2007.4447615
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4447615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4447615</ieee_id><sourcerecordid>4447615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1815-8108a7961b0790f8233bff5c810d0d4c545b93a897e63e6d5728e296f3bc88fd3</originalsourceid><addsrcrecordid>eNpNj8tKxDAYRiMiKGMfQNzkBTr-ae7Lscw4hREFb8vhb5pIpLaStOC8vYKzcPVxzuLAR8gVgyVjYG_emqfHZQWgl0IIrZg8IYXVholKCDAc1Ol_riyckyLnDwBgWnFr7QXZbjxOc_J0_T0ldFMcBxrGRO_nfoql6zFnels3dM5xeKc1DuMQHfb0FVPEyWe6GrA_5JgvyVnAPvviuAvyslk_19ty93DX1Ktd6ZhhsjQMDGqrWAvaQjAV520I0v36DjrhpJCt5Wis9op71UldGV9ZFXjrjAkdX5Drv2703u-_UvzEdNgf__MfwW9M5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature Extraction for Multi-class BCI using Canonical Variates Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Galan, Ferran ; Ferrez, Pierre. W. ; Oliva, Francesc ; Guardia, Joan ; del R. Millan, Jose</creator><creatorcontrib>Galan, Ferran ; Ferrez, Pierre. W. ; Oliva, Francesc ; Guardia, Joan ; del R. Millan, Jose</creatorcontrib><description>To propose a new feature extraction method with canonical solution for multi-class brain-computer interfaces (BCI). The proposed method should provide a reduced number of canonical discriminant spatial patterns (CDSP) and rank the channels sorted by power discriminability (DP) between classes. The feature extractor relays in canonical variates analysis (CVA) which provides the CDSP between the classes. The number of CDSP is equal to the number of classes minus one. We analyze EEG data recorded with 64 electrodes from 4 subjects recorded in 20 sessions. They were asked to execute twice in each session three different mental tasks (left hand imagination movement, rest, and words association) during 7 seconds. A ranking of electrodes sorted by power discriminability between classes and the CDSP were computed. After splitting data in training and test sets, we compared the classification accuracy achieved by linear discriminant analysis (LDA) in frequency and temporal domains. The average LDA classification accuracies over the four subjects using CVA on both domains are equivalent (57.89% in frequency domain and 59.43% in temporal domain). These results, in terms of classification accuracies, are also reflected in the similarity between the ranking of relevant channels in both domains. CVA is a simple feature extractor with canonical solution useful for multi-class BCI applications that can work on temporal or frequency domain.</description><identifier>ISBN: 9781424408290</identifier><identifier>ISBN: 1424408296</identifier><identifier>EISBN: 9781424408306</identifier><identifier>EISBN: 142440830X</identifier><identifier>DOI: 10.1109/WISP.2007.4447615</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain computer interfaces ; Canonical Variates Analysis ; Data analysis ; Data mining ; Electrodes ; Electroencephalogram ; Electroencephalography ; Feature extraction ; Frequency domain analysis ; Linear discriminant analysis ; Relays ; Testing</subject><ispartof>2007 IEEE International Symposium on Intelligent Signal Processing, 2007, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1815-8108a7961b0790f8233bff5c810d0d4c545b93a897e63e6d5728e296f3bc88fd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4447615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4447615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Galan, Ferran</creatorcontrib><creatorcontrib>Ferrez, Pierre. W.</creatorcontrib><creatorcontrib>Oliva, Francesc</creatorcontrib><creatorcontrib>Guardia, Joan</creatorcontrib><creatorcontrib>del R. Millan, Jose</creatorcontrib><title>Feature Extraction for Multi-class BCI using Canonical Variates Analysis</title><title>2007 IEEE International Symposium on Intelligent Signal Processing</title><addtitle>WISP</addtitle><description>To propose a new feature extraction method with canonical solution for multi-class brain-computer interfaces (BCI). The proposed method should provide a reduced number of canonical discriminant spatial patterns (CDSP) and rank the channels sorted by power discriminability (DP) between classes. The feature extractor relays in canonical variates analysis (CVA) which provides the CDSP between the classes. The number of CDSP is equal to the number of classes minus one. We analyze EEG data recorded with 64 electrodes from 4 subjects recorded in 20 sessions. They were asked to execute twice in each session three different mental tasks (left hand imagination movement, rest, and words association) during 7 seconds. A ranking of electrodes sorted by power discriminability between classes and the CDSP were computed. After splitting data in training and test sets, we compared the classification accuracy achieved by linear discriminant analysis (LDA) in frequency and temporal domains. The average LDA classification accuracies over the four subjects using CVA on both domains are equivalent (57.89% in frequency domain and 59.43% in temporal domain). These results, in terms of classification accuracies, are also reflected in the similarity between the ranking of relevant channels in both domains. CVA is a simple feature extractor with canonical solution useful for multi-class BCI applications that can work on temporal or frequency domain.</description><subject>Brain computer interfaces</subject><subject>Canonical Variates Analysis</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Electrodes</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Frequency domain analysis</subject><subject>Linear discriminant analysis</subject><subject>Relays</subject><subject>Testing</subject><isbn>9781424408290</isbn><isbn>1424408296</isbn><isbn>9781424408306</isbn><isbn>142440830X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNj8tKxDAYRiMiKGMfQNzkBTr-ae7Lscw4hREFb8vhb5pIpLaStOC8vYKzcPVxzuLAR8gVgyVjYG_emqfHZQWgl0IIrZg8IYXVholKCDAc1Ol_riyckyLnDwBgWnFr7QXZbjxOc_J0_T0ldFMcBxrGRO_nfoql6zFnels3dM5xeKc1DuMQHfb0FVPEyWe6GrA_5JgvyVnAPvviuAvyslk_19ty93DX1Ktd6ZhhsjQMDGqrWAvaQjAV520I0v36DjrhpJCt5Wis9op71UldGV9ZFXjrjAkdX5Drv2703u-_UvzEdNgf__MfwW9M5Q</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Galan, Ferran</creator><creator>Ferrez, Pierre. W.</creator><creator>Oliva, Francesc</creator><creator>Guardia, Joan</creator><creator>del R. Millan, Jose</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Feature Extraction for Multi-class BCI using Canonical Variates Analysis</title><author>Galan, Ferran ; Ferrez, Pierre. W. ; Oliva, Francesc ; Guardia, Joan ; del R. Millan, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1815-8108a7961b0790f8233bff5c810d0d4c545b93a897e63e6d5728e296f3bc88fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Brain computer interfaces</topic><topic>Canonical Variates Analysis</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Electrodes</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Frequency domain analysis</topic><topic>Linear discriminant analysis</topic><topic>Relays</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Galan, Ferran</creatorcontrib><creatorcontrib>Ferrez, Pierre. W.</creatorcontrib><creatorcontrib>Oliva, Francesc</creatorcontrib><creatorcontrib>Guardia, Joan</creatorcontrib><creatorcontrib>del R. Millan, Jose</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Galan, Ferran</au><au>Ferrez, Pierre. W.</au><au>Oliva, Francesc</au><au>Guardia, Joan</au><au>del R. Millan, Jose</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature Extraction for Multi-class BCI using Canonical Variates Analysis</atitle><btitle>2007 IEEE International Symposium on Intelligent Signal Processing</btitle><stitle>WISP</stitle><date>2007-10</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424408290</isbn><isbn>1424408296</isbn><eisbn>9781424408306</eisbn><eisbn>142440830X</eisbn><abstract>To propose a new feature extraction method with canonical solution for multi-class brain-computer interfaces (BCI). The proposed method should provide a reduced number of canonical discriminant spatial patterns (CDSP) and rank the channels sorted by power discriminability (DP) between classes. The feature extractor relays in canonical variates analysis (CVA) which provides the CDSP between the classes. The number of CDSP is equal to the number of classes minus one. We analyze EEG data recorded with 64 electrodes from 4 subjects recorded in 20 sessions. They were asked to execute twice in each session three different mental tasks (left hand imagination movement, rest, and words association) during 7 seconds. A ranking of electrodes sorted by power discriminability between classes and the CDSP were computed. After splitting data in training and test sets, we compared the classification accuracy achieved by linear discriminant analysis (LDA) in frequency and temporal domains. The average LDA classification accuracies over the four subjects using CVA on both domains are equivalent (57.89% in frequency domain and 59.43% in temporal domain). These results, in terms of classification accuracies, are also reflected in the similarity between the ranking of relevant channels in both domains. CVA is a simple feature extractor with canonical solution useful for multi-class BCI applications that can work on temporal or frequency domain.</abstract><pub>IEEE</pub><doi>10.1109/WISP.2007.4447615</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424408290
ispartof 2007 IEEE International Symposium on Intelligent Signal Processing, 2007, p.1-6
issn
language eng
recordid cdi_ieee_primary_4447615
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain computer interfaces
Canonical Variates Analysis
Data analysis
Data mining
Electrodes
Electroencephalogram
Electroencephalography
Feature extraction
Frequency domain analysis
Linear discriminant analysis
Relays
Testing
title Feature Extraction for Multi-class BCI using Canonical Variates Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20Extraction%20for%20Multi-class%20BCI%20using%20Canonical%20Variates%20Analysis&rft.btitle=2007%20IEEE%20International%20Symposium%20on%20Intelligent%20Signal%20Processing&rft.au=Galan,%20Ferran&rft.date=2007-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424408290&rft.isbn_list=1424408296&rft_id=info:doi/10.1109/WISP.2007.4447615&rft_dat=%3Cieee_6IE%3E4447615%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424408306&rft.eisbn_list=142440830X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4447615&rfr_iscdi=true