Neural network based BER prediction for 802.16e channel

The prediction of bit error rate (BER) in IEEE 802.16e mobile wireless MAN network is investigated here. The state of the channel is estimated on symbol by symbol basis on a realistic fading environment. The state of a channel is modeled as nonlinear and temporal system. Neural network method is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gowrishankar, Babu H.S., Ramesh, Satyanarayana, P.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Gowrishankar
Babu H.S., Ramesh
Satyanarayana, P.S.
description The prediction of bit error rate (BER) in IEEE 802.16e mobile wireless MAN network is investigated here. The state of the channel is estimated on symbol by symbol basis on a realistic fading environment. The state of a channel is modeled as nonlinear and temporal system. Neural network method is the best system to predict and analyze the behaviors of such nonlinear and temporal system. In this context, BER prediction by k symbol ahead is investigated by two different recurrent neural network architectures such as recurrent radial basis function (RRBF) network and echo state network (ESN). The predicted BER will match very well with the simulation results.
doi_str_mv 10.1109/SOFTCOM.2007.4446119
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4446119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4446119</ieee_id><sourcerecordid>4446119</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f943a5a2a50e0f9475e00c55ce44f671517ca011823f664525b90a91e76a67b33</originalsourceid><addsrcrecordid>eNo1j8FKw0AURUdEUGu-QBfzA4nvZebNZJYa2ipUA1rBXZlMXzAakzKJiH9vwbo692wuHCGuEDJEcNfP1WJdVg9ZDmAzrbVBdEfi3JHaL-3o9Vgkzhb_rvBUJOP4DgDojNWFORP2kb-i72TP0_cQP2TtR97K2_mT3EXetmFqh142Q5QF5BkaluHN9z13F-Kk8d3IyYEz8bKYr8u7dFUt78ubVdqipSltnFaefO4JGPZiiQECUWCtG2OR0AYPiEWuGmM05VQ78A7ZGm9srdRMXP79tsy82cX208efzaFV_QKu00WE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network based BER prediction for 802.16e channel</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gowrishankar ; Babu H.S., Ramesh ; Satyanarayana, P.S.</creator><creatorcontrib>Gowrishankar ; Babu H.S., Ramesh ; Satyanarayana, P.S.</creatorcontrib><description>The prediction of bit error rate (BER) in IEEE 802.16e mobile wireless MAN network is investigated here. The state of the channel is estimated on symbol by symbol basis on a realistic fading environment. The state of a channel is modeled as nonlinear and temporal system. Neural network method is the best system to predict and analyze the behaviors of such nonlinear and temporal system. In this context, BER prediction by k symbol ahead is investigated by two different recurrent neural network architectures such as recurrent radial basis function (RRBF) network and echo state network (ESN). The predicted BER will match very well with the simulation results.</description><identifier>ISBN: 9789536114931</identifier><identifier>ISBN: 9536114933</identifier><identifier>EISBN: 953611495X</identifier><identifier>EISBN: 9789536114955</identifier><identifier>DOI: 10.1109/SOFTCOM.2007.4446119</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Fading ; Frequency estimation ; Frequency synchronization ; Neural networks ; Nonlinear distortion ; OFDM ; Predictive models ; Quality of service ; Wireless networks</subject><ispartof>2007 15th International Conference on Software, Telecommunications and Computer Networks, 2007, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4446119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4446119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gowrishankar</creatorcontrib><creatorcontrib>Babu H.S., Ramesh</creatorcontrib><creatorcontrib>Satyanarayana, P.S.</creatorcontrib><title>Neural network based BER prediction for 802.16e channel</title><title>2007 15th International Conference on Software, Telecommunications and Computer Networks</title><addtitle>SOFTCOM</addtitle><description>The prediction of bit error rate (BER) in IEEE 802.16e mobile wireless MAN network is investigated here. The state of the channel is estimated on symbol by symbol basis on a realistic fading environment. The state of a channel is modeled as nonlinear and temporal system. Neural network method is the best system to predict and analyze the behaviors of such nonlinear and temporal system. In this context, BER prediction by k symbol ahead is investigated by two different recurrent neural network architectures such as recurrent radial basis function (RRBF) network and echo state network (ESN). The predicted BER will match very well with the simulation results.</description><subject>Bit error rate</subject><subject>Fading</subject><subject>Frequency estimation</subject><subject>Frequency synchronization</subject><subject>Neural networks</subject><subject>Nonlinear distortion</subject><subject>OFDM</subject><subject>Predictive models</subject><subject>Quality of service</subject><subject>Wireless networks</subject><isbn>9789536114931</isbn><isbn>9536114933</isbn><isbn>953611495X</isbn><isbn>9789536114955</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8FKw0AURUdEUGu-QBfzA4nvZebNZJYa2ipUA1rBXZlMXzAakzKJiH9vwbo692wuHCGuEDJEcNfP1WJdVg9ZDmAzrbVBdEfi3JHaL-3o9Vgkzhb_rvBUJOP4DgDojNWFORP2kb-i72TP0_cQP2TtR97K2_mT3EXetmFqh142Q5QF5BkaluHN9z13F-Kk8d3IyYEz8bKYr8u7dFUt78ubVdqipSltnFaefO4JGPZiiQECUWCtG2OR0AYPiEWuGmM05VQ78A7ZGm9srdRMXP79tsy82cX208efzaFV_QKu00WE</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Gowrishankar</creator><creator>Babu H.S., Ramesh</creator><creator>Satyanarayana, P.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Neural network based BER prediction for 802.16e channel</title><author>Gowrishankar ; Babu H.S., Ramesh ; Satyanarayana, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f943a5a2a50e0f9475e00c55ce44f671517ca011823f664525b90a91e76a67b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bit error rate</topic><topic>Fading</topic><topic>Frequency estimation</topic><topic>Frequency synchronization</topic><topic>Neural networks</topic><topic>Nonlinear distortion</topic><topic>OFDM</topic><topic>Predictive models</topic><topic>Quality of service</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Gowrishankar</creatorcontrib><creatorcontrib>Babu H.S., Ramesh</creatorcontrib><creatorcontrib>Satyanarayana, P.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gowrishankar</au><au>Babu H.S., Ramesh</au><au>Satyanarayana, P.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network based BER prediction for 802.16e channel</atitle><btitle>2007 15th International Conference on Software, Telecommunications and Computer Networks</btitle><stitle>SOFTCOM</stitle><date>2007-09</date><risdate>2007</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9789536114931</isbn><isbn>9536114933</isbn><eisbn>953611495X</eisbn><eisbn>9789536114955</eisbn><abstract>The prediction of bit error rate (BER) in IEEE 802.16e mobile wireless MAN network is investigated here. The state of the channel is estimated on symbol by symbol basis on a realistic fading environment. The state of a channel is modeled as nonlinear and temporal system. Neural network method is the best system to predict and analyze the behaviors of such nonlinear and temporal system. In this context, BER prediction by k symbol ahead is investigated by two different recurrent neural network architectures such as recurrent radial basis function (RRBF) network and echo state network (ESN). The predicted BER will match very well with the simulation results.</abstract><pub>IEEE</pub><doi>10.1109/SOFTCOM.2007.4446119</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9789536114931
ispartof 2007 15th International Conference on Software, Telecommunications and Computer Networks, 2007, p.1-5
issn
language eng
recordid cdi_ieee_primary_4446119
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit error rate
Fading
Frequency estimation
Frequency synchronization
Neural networks
Nonlinear distortion
OFDM
Predictive models
Quality of service
Wireless networks
title Neural network based BER prediction for 802.16e channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20based%20BER%20prediction%20for%20802.16e%20channel&rft.btitle=2007%2015th%20International%20Conference%20on%20Software,%20Telecommunications%20and%20Computer%20Networks&rft.au=Gowrishankar&rft.date=2007-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9789536114931&rft.isbn_list=9536114933&rft_id=info:doi/10.1109/SOFTCOM.2007.4446119&rft_dat=%3Cieee_6IE%3E4446119%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=953611495X&rft.eisbn_list=9789536114955&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4446119&rfr_iscdi=true