On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts

This letter considers the estimation of speech signals contaminated by additive noise in the discrete Fourier transform (DFT) domain. Existing complex-DFT estimators assume independency of the real and imaginary parts of the speech DFT coefficients, although this is not in line with measurements. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2008, Vol.15, p.213-216
Hauptverfasser: Erkelens, J.S., Hendriks, R.C., Heusdens, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 213
container_title IEEE signal processing letters
container_volume 15
creator Erkelens, J.S.
Hendriks, R.C.
Heusdens, R.
description This letter considers the estimation of speech signals contaminated by additive noise in the discrete Fourier transform (DFT) domain. Existing complex-DFT estimators assume independency of the real and imaginary parts of the speech DFT coefficients, although this is not in line with measurements. In this letter, we derive some general results on these estimators, under more realistic assumptions. Assuming that speech and noise are independent, speech DFT coefficients have uniform phase, and that noise DFT coefficients have a Gaussian density, we show theoretically that the spectral gain function for speech DFT estimation is real and upper-bounded by the corresponding gain function for spectral magnitude estimation. We also show that the minimum mean-square error (MMSE) estimator of the speech phase equals the noisy phase. No assumptions are made about the distribution of the speech spectral magnitudes. Recently, speech spectral amplitude estimators have been derived under a generalized-Gamma amplitude distribution. As an example, we will derive the corresponding complex-DFT estimators, without making the independence assumption.
doi_str_mv 10.1109/LSP.2007.911730
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4443129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4443129</ieee_id><sourcerecordid>2330790611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a3e5d8cd3e174b0ac9613716f4c92e7ef67206e15caa64a5b0291193663fa7183</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKtnD16C922TzW6yOZZqtVBosRWPS7o7aVO62TXJgv33plS8zAzDe_OYD6FHSkaUEjlerFejlBAxkpQKRq7QgOZ5kaSM0-s4E0ESKUlxi-68PxBCClrkA3RYWhz2gF99MI0KprW41XjaNt0RfvC6A6j2-GW2iSvQ2lQGbPD4y4R92wc88b5vjN3hua2hg1hswB-gjljZGs8btTNWuRNeKRf8PbrR6ujh4a8P0efsdTN9TxbLt_l0skgqlsqQKAZ5XVQ1AyqyLVGV5JQJynVWyRQEaC5SwoHmlVI8U_mWpPFjyThnWglasCF6vtztXPvdgw_loe2djZFlwVkuMpKdReOLqHKt9w502bkIwJ1KSsozzzLyLM88ywvP6Hi6OAwA_KuzLGM0lewXQ35wuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863574048</pqid></control><display><type>article</type><title>On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts</title><source>IEEE Electronic Library (IEL)</source><creator>Erkelens, J.S. ; Hendriks, R.C. ; Heusdens, R.</creator><creatorcontrib>Erkelens, J.S. ; Hendriks, R.C. ; Heusdens, R.</creatorcontrib><description>This letter considers the estimation of speech signals contaminated by additive noise in the discrete Fourier transform (DFT) domain. Existing complex-DFT estimators assume independency of the real and imaginary parts of the speech DFT coefficients, although this is not in line with measurements. In this letter, we derive some general results on these estimators, under more realistic assumptions. Assuming that speech and noise are independent, speech DFT coefficients have uniform phase, and that noise DFT coefficients have a Gaussian density, we show theoretically that the spectral gain function for speech DFT estimation is real and upper-bounded by the corresponding gain function for spectral magnitude estimation. We also show that the minimum mean-square error (MMSE) estimator of the speech phase equals the noisy phase. No assumptions are made about the distribution of the speech spectral magnitudes. Recently, speech spectral amplitude estimators have been derived under a generalized-Gamma amplitude distribution. As an example, we will derive the corresponding complex-DFT estimators, without making the independence assumption.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2007.911730</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive noise ; Amplitude estimation ; Complex-discrete Fourier transform (DFT) estimators ; Discrete Fourier transforms ; Fourier transforms ; Frequency ; Gaussian noise ; independence assumption ; Information systems ; Mean square errors ; minimum mean-square error estimation ; Noise level ; Phase estimation ; Phase noise ; Speech ; Speech enhancement</subject><ispartof>IEEE signal processing letters, 2008, Vol.15, p.213-216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-a3e5d8cd3e174b0ac9613716f4c92e7ef67206e15caa64a5b0291193663fa7183</citedby><cites>FETCH-LOGICAL-c329t-a3e5d8cd3e174b0ac9613716f4c92e7ef67206e15caa64a5b0291193663fa7183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4443129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4443129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erkelens, J.S.</creatorcontrib><creatorcontrib>Hendriks, R.C.</creatorcontrib><creatorcontrib>Heusdens, R.</creatorcontrib><title>On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter considers the estimation of speech signals contaminated by additive noise in the discrete Fourier transform (DFT) domain. Existing complex-DFT estimators assume independency of the real and imaginary parts of the speech DFT coefficients, although this is not in line with measurements. In this letter, we derive some general results on these estimators, under more realistic assumptions. Assuming that speech and noise are independent, speech DFT coefficients have uniform phase, and that noise DFT coefficients have a Gaussian density, we show theoretically that the spectral gain function for speech DFT estimation is real and upper-bounded by the corresponding gain function for spectral magnitude estimation. We also show that the minimum mean-square error (MMSE) estimator of the speech phase equals the noisy phase. No assumptions are made about the distribution of the speech spectral magnitudes. Recently, speech spectral amplitude estimators have been derived under a generalized-Gamma amplitude distribution. As an example, we will derive the corresponding complex-DFT estimators, without making the independence assumption.</description><subject>Additive noise</subject><subject>Amplitude estimation</subject><subject>Complex-discrete Fourier transform (DFT) estimators</subject><subject>Discrete Fourier transforms</subject><subject>Fourier transforms</subject><subject>Frequency</subject><subject>Gaussian noise</subject><subject>independence assumption</subject><subject>Information systems</subject><subject>Mean square errors</subject><subject>minimum mean-square error estimation</subject><subject>Noise level</subject><subject>Phase estimation</subject><subject>Phase noise</subject><subject>Speech</subject><subject>Speech enhancement</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKtnD16C922TzW6yOZZqtVBosRWPS7o7aVO62TXJgv33plS8zAzDe_OYD6FHSkaUEjlerFejlBAxkpQKRq7QgOZ5kaSM0-s4E0ESKUlxi-68PxBCClrkA3RYWhz2gF99MI0KprW41XjaNt0RfvC6A6j2-GW2iSvQ2lQGbPD4y4R92wc88b5vjN3hua2hg1hswB-gjljZGs8btTNWuRNeKRf8PbrR6ujh4a8P0efsdTN9TxbLt_l0skgqlsqQKAZ5XVQ1AyqyLVGV5JQJynVWyRQEaC5SwoHmlVI8U_mWpPFjyThnWglasCF6vtztXPvdgw_loe2djZFlwVkuMpKdReOLqHKt9w502bkIwJ1KSsozzzLyLM88ywvP6Hi6OAwA_KuzLGM0lewXQ35wuw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Erkelens, J.S.</creator><creator>Hendriks, R.C.</creator><creator>Heusdens, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts</title><author>Erkelens, J.S. ; Hendriks, R.C. ; Heusdens, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a3e5d8cd3e174b0ac9613716f4c92e7ef67206e15caa64a5b0291193663fa7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Amplitude estimation</topic><topic>Complex-discrete Fourier transform (DFT) estimators</topic><topic>Discrete Fourier transforms</topic><topic>Fourier transforms</topic><topic>Frequency</topic><topic>Gaussian noise</topic><topic>independence assumption</topic><topic>Information systems</topic><topic>Mean square errors</topic><topic>minimum mean-square error estimation</topic><topic>Noise level</topic><topic>Phase estimation</topic><topic>Phase noise</topic><topic>Speech</topic><topic>Speech enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erkelens, J.S.</creatorcontrib><creatorcontrib>Hendriks, R.C.</creatorcontrib><creatorcontrib>Heusdens, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erkelens, J.S.</au><au>Hendriks, R.C.</au><au>Heusdens, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2008</date><risdate>2008</risdate><volume>15</volume><spage>213</spage><epage>216</epage><pages>213-216</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter considers the estimation of speech signals contaminated by additive noise in the discrete Fourier transform (DFT) domain. Existing complex-DFT estimators assume independency of the real and imaginary parts of the speech DFT coefficients, although this is not in line with measurements. In this letter, we derive some general results on these estimators, under more realistic assumptions. Assuming that speech and noise are independent, speech DFT coefficients have uniform phase, and that noise DFT coefficients have a Gaussian density, we show theoretically that the spectral gain function for speech DFT estimation is real and upper-bounded by the corresponding gain function for spectral magnitude estimation. We also show that the minimum mean-square error (MMSE) estimator of the speech phase equals the noisy phase. No assumptions are made about the distribution of the speech spectral magnitudes. Recently, speech spectral amplitude estimators have been derived under a generalized-Gamma amplitude distribution. As an example, we will derive the corresponding complex-DFT estimators, without making the independence assumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2007.911730</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2008, Vol.15, p.213-216
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_4443129
source IEEE Electronic Library (IEL)
subjects Additive noise
Amplitude estimation
Complex-discrete Fourier transform (DFT) estimators
Discrete Fourier transforms
Fourier transforms
Frequency
Gaussian noise
independence assumption
Information systems
Mean square errors
minimum mean-square error estimation
Noise level
Phase estimation
Phase noise
Speech
Speech enhancement
title On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Estimation%20of%20Complex%20Speech%20DFT%20Coefficients%20Without%20Assuming%20Independent%20Real%20and%20Imaginary%20Parts&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Erkelens,%20J.S.&rft.date=2008&rft.volume=15&rft.spage=213&rft.epage=216&rft.pages=213-216&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2007.911730&rft_dat=%3Cproquest_RIE%3E2330790611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863574048&rft_id=info:pmid/&rft_ieee_id=4443129&rfr_iscdi=true