Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms

Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seung-Hyun Paek, Sohn, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue
container_start_page 220
container_title
container_volume
creator Seung-Hyun Paek
Sohn, K.
description Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.
doi_str_mv 10.1109/IPC.2007.58
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4438428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4438428</ieee_id><sourcerecordid>4438428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6a3b9637e3f07759a005d168121877b3dcef6ee0ba6d2ab73c72722a733e618f3</originalsourceid><addsrcrecordid>eNotjM1KxDAURgMiKGNXLt3kBVqT3DY3WY5VZwrjD6i4HNL21onOpJJGxbd3RL_NgQPnY-xUikJKYc-b-7pQQmBRmQOWWTQCta1ACK2OWDZNr2K_sqwA7DF7mMdu4xN16SNSXlNI0Xf8ltLXGN_4BW3cpx8jvxl72vIFBYou-THwYS8v6bfz4YU3IVEMlPjzGHfTCTsc3Hai7J8z9nR99Vgv89Xdoqnnq9xLrFKuHbRWAxIMArGyToiql9pIJQ1iC31HgyYSrdO9ci1ChwqVcghAWpoBZuzs79cT0fo9-p2L3-uyBFMqAz-6W03F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seung-Hyun Paek ; Sohn, K.</creator><creatorcontrib>Seung-Hyun Paek ; Sohn, K.</creatorcontrib><description>Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.</description><identifier>ISBN: 9780769530062</identifier><identifier>ISBN: 0769530060</identifier><identifier>DOI: 10.1109/IPC.2007.58</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Classification tree analysis ; Data mining ; Data security ; Decision trees ; Intelligent networks ; Intrusion detection ; IP networks ; Pervasive computing ; Support vector machines</subject><ispartof>The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), 2007, p.220-223</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4438428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4438428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung-Hyun Paek</creatorcontrib><creatorcontrib>Sohn, K.</creatorcontrib><title>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</title><title>The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007)</title><addtitle>IPC</addtitle><description>Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.</description><subject>Classification algorithms</subject><subject>Classification tree analysis</subject><subject>Data mining</subject><subject>Data security</subject><subject>Decision trees</subject><subject>Intelligent networks</subject><subject>Intrusion detection</subject><subject>IP networks</subject><subject>Pervasive computing</subject><subject>Support vector machines</subject><isbn>9780769530062</isbn><isbn>0769530060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxDAURgMiKGNXLt3kBVqT3DY3WY5VZwrjD6i4HNL21onOpJJGxbd3RL_NgQPnY-xUikJKYc-b-7pQQmBRmQOWWTQCta1ACK2OWDZNr2K_sqwA7DF7mMdu4xN16SNSXlNI0Xf8ltLXGN_4BW3cpx8jvxl72vIFBYou-THwYS8v6bfz4YU3IVEMlPjzGHfTCTsc3Hai7J8z9nR99Vgv89Xdoqnnq9xLrFKuHbRWAxIMArGyToiql9pIJQ1iC31HgyYSrdO9ci1ChwqVcghAWpoBZuzs79cT0fo9-p2L3-uyBFMqAz-6W03F</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Seung-Hyun Paek</creator><creator>Sohn, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</title><author>Seung-Hyun Paek ; Sohn, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6a3b9637e3f07759a005d168121877b3dcef6ee0ba6d2ab73c72722a733e618f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Classification algorithms</topic><topic>Classification tree analysis</topic><topic>Data mining</topic><topic>Data security</topic><topic>Decision trees</topic><topic>Intelligent networks</topic><topic>Intrusion detection</topic><topic>IP networks</topic><topic>Pervasive computing</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Seung-Hyun Paek</creatorcontrib><creatorcontrib>Sohn, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung-Hyun Paek</au><au>Sohn, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</atitle><btitle>The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007)</btitle><stitle>IPC</stitle><date>2007-10</date><risdate>2007</risdate><spage>220</spage><epage>223</epage><pages>220-223</pages><isbn>9780769530062</isbn><isbn>0769530060</isbn><abstract>Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.</abstract><pub>IEEE</pub><doi>10.1109/IPC.2007.58</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769530062
ispartof The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), 2007, p.220-223
issn
language eng
recordid cdi_ieee_primary_4438428
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Classification tree analysis
Data mining
Data security
Decision trees
Intelligent networks
Intrusion detection
IP networks
Pervasive computing
Support vector machines
title Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Architecture-Centric%20Network%20Behavior%20Model%20Generation%20for%20Detecting%20Internet%20Worms&rft.btitle=The%202007%20International%20Conference%20on%20Intelligent%20Pervasive%20Computing%20(IPC%202007)&rft.au=Seung-Hyun%20Paek&rft.date=2007-10&rft.spage=220&rft.epage=223&rft.pages=220-223&rft.isbn=9780769530062&rft.isbn_list=0769530060&rft_id=info:doi/10.1109/IPC.2007.58&rft_dat=%3Cieee_6IE%3E4438428%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4438428&rfr_iscdi=true