Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms
Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of networ...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | |
container_start_page | 220 |
container_title | |
container_volume | |
creator | Seung-Hyun Paek Sohn, K. |
description | Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5. |
doi_str_mv | 10.1109/IPC.2007.58 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4438428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4438428</ieee_id><sourcerecordid>4438428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6a3b9637e3f07759a005d168121877b3dcef6ee0ba6d2ab73c72722a733e618f3</originalsourceid><addsrcrecordid>eNotjM1KxDAURgMiKGNXLt3kBVqT3DY3WY5VZwrjD6i4HNL21onOpJJGxbd3RL_NgQPnY-xUikJKYc-b-7pQQmBRmQOWWTQCta1ACK2OWDZNr2K_sqwA7DF7mMdu4xN16SNSXlNI0Xf8ltLXGN_4BW3cpx8jvxl72vIFBYou-THwYS8v6bfz4YU3IVEMlPjzGHfTCTsc3Hai7J8z9nR99Vgv89Xdoqnnq9xLrFKuHbRWAxIMArGyToiql9pIJQ1iC31HgyYSrdO9ci1ChwqVcghAWpoBZuzs79cT0fo9-p2L3-uyBFMqAz-6W03F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seung-Hyun Paek ; Sohn, K.</creator><creatorcontrib>Seung-Hyun Paek ; Sohn, K.</creatorcontrib><description>Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.</description><identifier>ISBN: 9780769530062</identifier><identifier>ISBN: 0769530060</identifier><identifier>DOI: 10.1109/IPC.2007.58</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Classification tree analysis ; Data mining ; Data security ; Decision trees ; Intelligent networks ; Intrusion detection ; IP networks ; Pervasive computing ; Support vector machines</subject><ispartof>The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), 2007, p.220-223</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4438428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4438428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung-Hyun Paek</creatorcontrib><creatorcontrib>Sohn, K.</creatorcontrib><title>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</title><title>The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007)</title><addtitle>IPC</addtitle><description>Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.</description><subject>Classification algorithms</subject><subject>Classification tree analysis</subject><subject>Data mining</subject><subject>Data security</subject><subject>Decision trees</subject><subject>Intelligent networks</subject><subject>Intrusion detection</subject><subject>IP networks</subject><subject>Pervasive computing</subject><subject>Support vector machines</subject><isbn>9780769530062</isbn><isbn>0769530060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxDAURgMiKGNXLt3kBVqT3DY3WY5VZwrjD6i4HNL21onOpJJGxbd3RL_NgQPnY-xUikJKYc-b-7pQQmBRmQOWWTQCta1ACK2OWDZNr2K_sqwA7DF7mMdu4xN16SNSXlNI0Xf8ltLXGN_4BW3cpx8jvxl72vIFBYou-THwYS8v6bfz4YU3IVEMlPjzGHfTCTsc3Hai7J8z9nR99Vgv89Xdoqnnq9xLrFKuHbRWAxIMArGyToiql9pIJQ1iC31HgyYSrdO9ci1ChwqVcghAWpoBZuzs79cT0fo9-p2L3-uyBFMqAz-6W03F</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Seung-Hyun Paek</creator><creator>Sohn, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</title><author>Seung-Hyun Paek ; Sohn, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6a3b9637e3f07759a005d168121877b3dcef6ee0ba6d2ab73c72722a733e618f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Classification algorithms</topic><topic>Classification tree analysis</topic><topic>Data mining</topic><topic>Data security</topic><topic>Decision trees</topic><topic>Intelligent networks</topic><topic>Intrusion detection</topic><topic>IP networks</topic><topic>Pervasive computing</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Seung-Hyun Paek</creatorcontrib><creatorcontrib>Sohn, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung-Hyun Paek</au><au>Sohn, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms</atitle><btitle>The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007)</btitle><stitle>IPC</stitle><date>2007-10</date><risdate>2007</risdate><spage>220</spage><epage>223</epage><pages>220-223</pages><isbn>9780769530062</isbn><isbn>0769530060</isbn><abstract>Data mining techniques have been popular in the research area of intrusion detections. However, most researches have mainly focused on the intrusion detection in the view of model generation techniques, but not in the view of system architectures. In this paper, we propose the architecture of network-intrusion detection model generation system. Our architecture creates candidate models by various data mining techniques and one new technique (sC4.5) for the network behavior data set and then elects the best appropriate model according to user requirements after evaluating candidate models. We also present sC4.5 as a decision tree classification algorithm by complimenting existing C4.5 algorithm. sC4.5 preserves classification accuracy like C4.5 and makes the decision tree smaller than C4.5.</abstract><pub>IEEE</pub><doi>10.1109/IPC.2007.58</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769530062 |
ispartof | The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), 2007, p.220-223 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4438428 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Classification tree analysis Data mining Data security Decision trees Intelligent networks Intrusion detection IP networks Pervasive computing Support vector machines |
title | Architecture-Centric Network Behavior Model Generation for Detecting Internet Worms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Architecture-Centric%20Network%20Behavior%20Model%20Generation%20for%20Detecting%20Internet%20Worms&rft.btitle=The%202007%20International%20Conference%20on%20Intelligent%20Pervasive%20Computing%20(IPC%202007)&rft.au=Seung-Hyun%20Paek&rft.date=2007-10&rft.spage=220&rft.epage=223&rft.pages=220-223&rft.isbn=9780769530062&rft.isbn_list=0769530060&rft_id=info:doi/10.1109/IPC.2007.58&rft_dat=%3Cieee_6IE%3E4438428%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4438428&rfr_iscdi=true |