An accurate PLL behavioral model for fast Monte Carlo analysis under process variation

Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chin-Cheng Kuo, Meng-Jung Lee, I-Ching Tsai, Liu, C.-N.J., Ching-Ji Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 110
container_title
container_volume
creator Chin-Cheng Kuo
Meng-Jung Lee
I-Ching Tsai
Liu, C.-N.J.
Ching-Ji Huang
description Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.
doi_str_mv 10.1109/BMAS.2007.4437535
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4437535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4437535</ieee_id><sourcerecordid>4437535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-61edb19a70720bd9e0443f90e5666b4ae0925d4b8da765777215293888de60853</originalsourceid><addsrcrecordid>eNo9kNtKAzEURYMXsNZ-gPiSH5h6ksll8liLVWGKgpfXcqY5g5HppCTTQv_egsWn_bAXG9Zm7FbAVAhw9w_L2ftUAtipUqXVpT5jIykMFGUl5Dm7FkoqJbSx-uK_AHXFJjn_AIAA61xlRuxr1nNcr3cJB-Jvdc0b-sZ9iAk7vomeOt7GxFvMA1_G_sjMMXWRY4_dIYfMd72nxLcprilnvscUcAixv2GXLXaZJqccs8_F48f8uahfn17ms7oIwuqhMIJ8IxxasBIa7wiONq0D0saYRiGBk9qrpvJojbbWSqGlK6uq8mSg0uWY3f3tBiJabVPYYDqsTpeUvzXfUgU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chin-Cheng Kuo ; Meng-Jung Lee ; I-Ching Tsai ; Liu, C.-N.J. ; Ching-Ji Huang</creator><creatorcontrib>Chin-Cheng Kuo ; Meng-Jung Lee ; I-Ching Tsai ; Liu, C.-N.J. ; Ching-Ji Huang</creatorcontrib><description>Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.</description><identifier>ISSN: 2160-3804</identifier><identifier>ISBN: 1424415675</identifier><identifier>ISBN: 9781424415670</identifier><identifier>EISSN: 2160-3812</identifier><identifier>DOI: 10.1109/BMAS.2007.4437535</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Circuit simulation ; Equations ; Integrated circuit modeling ; Monte Carlo methods ; Performance analysis ; Phase locked loops ; Process design ; Sensitivity analysis ; Statistical analysis</subject><ispartof>2007 IEEE International Behavioral Modeling and Simulation Workshop, 2007, p.110-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4437535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4437535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin-Cheng Kuo</creatorcontrib><creatorcontrib>Meng-Jung Lee</creatorcontrib><creatorcontrib>I-Ching Tsai</creatorcontrib><creatorcontrib>Liu, C.-N.J.</creatorcontrib><creatorcontrib>Ching-Ji Huang</creatorcontrib><title>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</title><title>2007 IEEE International Behavioral Modeling and Simulation Workshop</title><addtitle>BMAS</addtitle><description>Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.</description><subject>Analytical models</subject><subject>Circuit simulation</subject><subject>Equations</subject><subject>Integrated circuit modeling</subject><subject>Monte Carlo methods</subject><subject>Performance analysis</subject><subject>Phase locked loops</subject><subject>Process design</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><issn>2160-3804</issn><issn>2160-3812</issn><isbn>1424415675</isbn><isbn>9781424415670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEURYMXsNZ-gPiSH5h6ksll8liLVWGKgpfXcqY5g5HppCTTQv_egsWn_bAXG9Zm7FbAVAhw9w_L2ftUAtipUqXVpT5jIykMFGUl5Dm7FkoqJbSx-uK_AHXFJjn_AIAA61xlRuxr1nNcr3cJB-Jvdc0b-sZ9iAk7vomeOt7GxFvMA1_G_sjMMXWRY4_dIYfMd72nxLcprilnvscUcAixv2GXLXaZJqccs8_F48f8uahfn17ms7oIwuqhMIJ8IxxasBIa7wiONq0D0saYRiGBk9qrpvJojbbWSqGlK6uq8mSg0uWY3f3tBiJabVPYYDqsTpeUvzXfUgU</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Chin-Cheng Kuo</creator><creator>Meng-Jung Lee</creator><creator>I-Ching Tsai</creator><creator>Liu, C.-N.J.</creator><creator>Ching-Ji Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</title><author>Chin-Cheng Kuo ; Meng-Jung Lee ; I-Ching Tsai ; Liu, C.-N.J. ; Ching-Ji Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-61edb19a70720bd9e0443f90e5666b4ae0925d4b8da765777215293888de60853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical models</topic><topic>Circuit simulation</topic><topic>Equations</topic><topic>Integrated circuit modeling</topic><topic>Monte Carlo methods</topic><topic>Performance analysis</topic><topic>Phase locked loops</topic><topic>Process design</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin-Cheng Kuo</creatorcontrib><creatorcontrib>Meng-Jung Lee</creatorcontrib><creatorcontrib>I-Ching Tsai</creatorcontrib><creatorcontrib>Liu, C.-N.J.</creatorcontrib><creatorcontrib>Ching-Ji Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin-Cheng Kuo</au><au>Meng-Jung Lee</au><au>I-Ching Tsai</au><au>Liu, C.-N.J.</au><au>Ching-Ji Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</atitle><btitle>2007 IEEE International Behavioral Modeling and Simulation Workshop</btitle><stitle>BMAS</stitle><date>2007-09</date><risdate>2007</risdate><spage>110</spage><epage>114</epage><pages>110-114</pages><issn>2160-3804</issn><eissn>2160-3812</eissn><isbn>1424415675</isbn><isbn>9781424415670</isbn><abstract>Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.</abstract><pub>IEEE</pub><doi>10.1109/BMAS.2007.4437535</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-3804
ispartof 2007 IEEE International Behavioral Modeling and Simulation Workshop, 2007, p.110-114
issn 2160-3804
2160-3812
language eng
recordid cdi_ieee_primary_4437535
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Circuit simulation
Equations
Integrated circuit modeling
Monte Carlo methods
Performance analysis
Phase locked loops
Process design
Sensitivity analysis
Statistical analysis
title An accurate PLL behavioral model for fast Monte Carlo analysis under process variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20accurate%20PLL%20behavioral%20model%20for%20fast%20Monte%20Carlo%20analysis%20under%20process%20variation&rft.btitle=2007%20IEEE%20International%20Behavioral%20Modeling%20and%20Simulation%20Workshop&rft.au=Chin-Cheng%20Kuo&rft.date=2007-09&rft.spage=110&rft.epage=114&rft.pages=110-114&rft.issn=2160-3804&rft.eissn=2160-3812&rft.isbn=1424415675&rft.isbn_list=9781424415670&rft_id=info:doi/10.1109/BMAS.2007.4437535&rft_dat=%3Cieee_6IE%3E4437535%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4437535&rfr_iscdi=true