An accurate PLL behavioral model for fast Monte Carlo analysis under process variation
Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | |
container_volume | |
creator | Chin-Cheng Kuo Meng-Jung Lee I-Ching Tsai Liu, C.-N.J. Ching-Ji Huang |
description | Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation. |
doi_str_mv | 10.1109/BMAS.2007.4437535 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4437535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4437535</ieee_id><sourcerecordid>4437535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-61edb19a70720bd9e0443f90e5666b4ae0925d4b8da765777215293888de60853</originalsourceid><addsrcrecordid>eNo9kNtKAzEURYMXsNZ-gPiSH5h6ksll8liLVWGKgpfXcqY5g5HppCTTQv_egsWn_bAXG9Zm7FbAVAhw9w_L2ftUAtipUqXVpT5jIykMFGUl5Dm7FkoqJbSx-uK_AHXFJjn_AIAA61xlRuxr1nNcr3cJB-Jvdc0b-sZ9iAk7vomeOt7GxFvMA1_G_sjMMXWRY4_dIYfMd72nxLcprilnvscUcAixv2GXLXaZJqccs8_F48f8uahfn17ms7oIwuqhMIJ8IxxasBIa7wiONq0D0saYRiGBk9qrpvJojbbWSqGlK6uq8mSg0uWY3f3tBiJabVPYYDqsTpeUvzXfUgU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chin-Cheng Kuo ; Meng-Jung Lee ; I-Ching Tsai ; Liu, C.-N.J. ; Ching-Ji Huang</creator><creatorcontrib>Chin-Cheng Kuo ; Meng-Jung Lee ; I-Ching Tsai ; Liu, C.-N.J. ; Ching-Ji Huang</creatorcontrib><description>Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.</description><identifier>ISSN: 2160-3804</identifier><identifier>ISBN: 1424415675</identifier><identifier>ISBN: 9781424415670</identifier><identifier>EISSN: 2160-3812</identifier><identifier>DOI: 10.1109/BMAS.2007.4437535</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Circuit simulation ; Equations ; Integrated circuit modeling ; Monte Carlo methods ; Performance analysis ; Phase locked loops ; Process design ; Sensitivity analysis ; Statistical analysis</subject><ispartof>2007 IEEE International Behavioral Modeling and Simulation Workshop, 2007, p.110-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4437535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4437535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin-Cheng Kuo</creatorcontrib><creatorcontrib>Meng-Jung Lee</creatorcontrib><creatorcontrib>I-Ching Tsai</creatorcontrib><creatorcontrib>Liu, C.-N.J.</creatorcontrib><creatorcontrib>Ching-Ji Huang</creatorcontrib><title>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</title><title>2007 IEEE International Behavioral Modeling and Simulation Workshop</title><addtitle>BMAS</addtitle><description>Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.</description><subject>Analytical models</subject><subject>Circuit simulation</subject><subject>Equations</subject><subject>Integrated circuit modeling</subject><subject>Monte Carlo methods</subject><subject>Performance analysis</subject><subject>Phase locked loops</subject><subject>Process design</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><issn>2160-3804</issn><issn>2160-3812</issn><isbn>1424415675</isbn><isbn>9781424415670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEURYMXsNZ-gPiSH5h6ksll8liLVWGKgpfXcqY5g5HppCTTQv_egsWn_bAXG9Zm7FbAVAhw9w_L2ftUAtipUqXVpT5jIykMFGUl5Dm7FkoqJbSx-uK_AHXFJjn_AIAA61xlRuxr1nNcr3cJB-Jvdc0b-sZ9iAk7vomeOt7GxFvMA1_G_sjMMXWRY4_dIYfMd72nxLcprilnvscUcAixv2GXLXaZJqccs8_F48f8uahfn17ms7oIwuqhMIJ8IxxasBIa7wiONq0D0saYRiGBk9qrpvJojbbWSqGlK6uq8mSg0uWY3f3tBiJabVPYYDqsTpeUvzXfUgU</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Chin-Cheng Kuo</creator><creator>Meng-Jung Lee</creator><creator>I-Ching Tsai</creator><creator>Liu, C.-N.J.</creator><creator>Ching-Ji Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</title><author>Chin-Cheng Kuo ; Meng-Jung Lee ; I-Ching Tsai ; Liu, C.-N.J. ; Ching-Ji Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-61edb19a70720bd9e0443f90e5666b4ae0925d4b8da765777215293888de60853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical models</topic><topic>Circuit simulation</topic><topic>Equations</topic><topic>Integrated circuit modeling</topic><topic>Monte Carlo methods</topic><topic>Performance analysis</topic><topic>Phase locked loops</topic><topic>Process design</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin-Cheng Kuo</creatorcontrib><creatorcontrib>Meng-Jung Lee</creatorcontrib><creatorcontrib>I-Ching Tsai</creatorcontrib><creatorcontrib>Liu, C.-N.J.</creatorcontrib><creatorcontrib>Ching-Ji Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin-Cheng Kuo</au><au>Meng-Jung Lee</au><au>I-Ching Tsai</au><au>Liu, C.-N.J.</au><au>Ching-Ji Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An accurate PLL behavioral model for fast Monte Carlo analysis under process variation</atitle><btitle>2007 IEEE International Behavioral Modeling and Simulation Workshop</btitle><stitle>BMAS</stitle><date>2007-09</date><risdate>2007</risdate><spage>110</spage><epage>114</epage><pages>110-114</pages><issn>2160-3804</issn><eissn>2160-3812</eissn><isbn>1424415675</isbn><isbn>9781424415670</isbn><abstract>Hierarchical statistical analysis using the regression-based approach is often used to improve the extremely expensive HSPICE Monte Carlo (MC) analysis. However, accurately fitting the regression equations requires many simulation samples. In this paper, an accurate behavioral Monte Carlo simulation (BMCS) approach to analyze PLL designs under process variation is developed by building a bottom-up behavioral modeling approach with an efficient extraction process. Using the accurate model, we also develop a modified sensitivity analysis for process variation effects to provide accurate enough results with less regression cost. As shown in the experimental results, we reduce the simulation time of HSPICE MC analysis from several weeks to several hours and still retain similar statistical results as in HSPICE MC simulation.</abstract><pub>IEEE</pub><doi>10.1109/BMAS.2007.4437535</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-3804 |
ispartof | 2007 IEEE International Behavioral Modeling and Simulation Workshop, 2007, p.110-114 |
issn | 2160-3804 2160-3812 |
language | eng |
recordid | cdi_ieee_primary_4437535 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Circuit simulation Equations Integrated circuit modeling Monte Carlo methods Performance analysis Phase locked loops Process design Sensitivity analysis Statistical analysis |
title | An accurate PLL behavioral model for fast Monte Carlo analysis under process variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20accurate%20PLL%20behavioral%20model%20for%20fast%20Monte%20Carlo%20analysis%20under%20process%20variation&rft.btitle=2007%20IEEE%20International%20Behavioral%20Modeling%20and%20Simulation%20Workshop&rft.au=Chin-Cheng%20Kuo&rft.date=2007-09&rft.spage=110&rft.epage=114&rft.pages=110-114&rft.issn=2160-3804&rft.eissn=2160-3812&rft.isbn=1424415675&rft.isbn_list=9781424415670&rft_id=info:doi/10.1109/BMAS.2007.4437535&rft_dat=%3Cieee_6IE%3E4437535%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4437535&rfr_iscdi=true |