A robust particle filter for state estimation - with convergence results
Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itsel...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | |
container_start_page | 312 |
container_title | |
container_volume | |
creator | Xiao-Li Hu Schon, T.B. Ljung, L. |
description | Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity. |
doi_str_mv | 10.1109/CDC.2007.4434208 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_4434208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4434208</ieee_id><sourcerecordid>oai_DiVA_org_liu_38861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1271-721639d0389a50478e884f9dd853324f8239a90d62e3a912c978a56c2ed439ff3</originalsourceid><addsrcrecordid>eNpVkE1LAzEYhCMqWGvvgpf8ALe--egmOS7baoWCF_W6pLtvamTtLknW4r93oUXwNAw8DDNDyC2DOWNgHsplOecAai6lkBz0GZkZpZnkUjJptDr_5xVckAkwwzLOWX5FrmP8BAANeT4h64KGbjvERHsbkq9bpM63CQN1XaAx2YQUY_JfNvluTzN68OmD1t3-G8MO9zXSgHFoU7whl862EWcnnZK3x9Vruc42L0_PZbHJPOOKZWqsIEwDQhu7AKk0ai2daRq9EIJLp7kw1kCTcxTWMF6PQ-wirzk2UhjnxJTcH3PjAfthW_Vh7BZ-qs76aunfi6oLu6r1QyW0ztmI3x1xj4h_8Ok38Qvq5l2j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A robust particle filter for state estimation - with convergence results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiao-Li Hu ; Schon, T.B. ; Ljung, L.</creator><creatorcontrib>Xiao-Li Hu ; Schon, T.B. ; Ljung, L.</creatorcontrib><description>Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424414970</identifier><identifier>ISBN: 1424414970</identifier><identifier>ISBN: 9781424414987</identifier><identifier>ISBN: 1424414989</identifier><identifier>EISBN: 9781424414987</identifier><identifier>EISBN: 1424414989</identifier><identifier>DOI: 10.1109/CDC.2007.4434208</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Equations ; Filtering ; Noise measurement ; Nonlinear dynamical systems ; Nonlinear estimation ; Nonlinear systems ; Particle filtering ; Particle filters ; Robustness ; State estimation ; Stochastic processes ; TECHNOLOGY ; TEKNIKVETENSKAP ; Time measurement</subject><ispartof>2007 46th IEEE Conference on Decision and Control, 2007, p.312-317</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4434208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,310,311,782,786,791,792,887,2062,4054,4055,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4434208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-38861$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao-Li Hu</creatorcontrib><creatorcontrib>Schon, T.B.</creatorcontrib><creatorcontrib>Ljung, L.</creatorcontrib><title>A robust particle filter for state estimation - with convergence results</title><title>2007 46th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.</description><subject>Convergence</subject><subject>Equations</subject><subject>Filtering</subject><subject>Noise measurement</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear estimation</subject><subject>Nonlinear systems</subject><subject>Particle filtering</subject><subject>Particle filters</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Stochastic processes</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Time measurement</subject><issn>0191-2216</issn><isbn>9781424414970</isbn><isbn>1424414970</isbn><isbn>9781424414987</isbn><isbn>1424414989</isbn><isbn>9781424414987</isbn><isbn>1424414989</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1LAzEYhCMqWGvvgpf8ALe--egmOS7baoWCF_W6pLtvamTtLknW4r93oUXwNAw8DDNDyC2DOWNgHsplOecAai6lkBz0GZkZpZnkUjJptDr_5xVckAkwwzLOWX5FrmP8BAANeT4h64KGbjvERHsbkq9bpM63CQN1XaAx2YQUY_JfNvluTzN68OmD1t3-G8MO9zXSgHFoU7whl862EWcnnZK3x9Vruc42L0_PZbHJPOOKZWqsIEwDQhu7AKk0ai2daRq9EIJLp7kw1kCTcxTWMF6PQ-wirzk2UhjnxJTcH3PjAfthW_Vh7BZ-qs76aunfi6oLu6r1QyW0ztmI3x1xj4h_8Ok38Qvq5l2j</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Xiao-Li Hu</creator><creator>Schon, T.B.</creator><creator>Ljung, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DG8</scope></search><sort><creationdate>200712</creationdate><title>A robust particle filter for state estimation - with convergence results</title><author>Xiao-Li Hu ; Schon, T.B. ; Ljung, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1271-721639d0389a50478e884f9dd853324f8239a90d62e3a912c978a56c2ed439ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Convergence</topic><topic>Equations</topic><topic>Filtering</topic><topic>Noise measurement</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear estimation</topic><topic>Nonlinear systems</topic><topic>Particle filtering</topic><topic>Particle filters</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Stochastic processes</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao-Li Hu</creatorcontrib><creatorcontrib>Schon, T.B.</creatorcontrib><creatorcontrib>Ljung, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Linköpings universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao-Li Hu</au><au>Schon, T.B.</au><au>Ljung, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A robust particle filter for state estimation - with convergence results</atitle><btitle>2007 46th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2007-12</date><risdate>2007</risdate><spage>312</spage><epage>317</epage><pages>312-317</pages><issn>0191-2216</issn><isbn>9781424414970</isbn><isbn>1424414970</isbn><isbn>9781424414987</isbn><isbn>1424414989</isbn><eisbn>9781424414987</eisbn><eisbn>1424414989</eisbn><abstract>Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2007.4434208</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2007 46th IEEE Conference on Decision and Control, 2007, p.312-317 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_4434208 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Convergence Equations Filtering Noise measurement Nonlinear dynamical systems Nonlinear estimation Nonlinear systems Particle filtering Particle filters Robustness State estimation Stochastic processes TECHNOLOGY TEKNIKVETENSKAP Time measurement |
title | A robust particle filter for state estimation - with convergence results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T05%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20robust%20particle%20filter%20for%20state%20estimation%20-%20with%20convergence%20results&rft.btitle=2007%2046th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Xiao-Li%20Hu&rft.date=2007-12&rft.spage=312&rft.epage=317&rft.pages=312-317&rft.issn=0191-2216&rft.isbn=9781424414970&rft.isbn_list=1424414970&rft.isbn_list=9781424414987&rft.isbn_list=1424414989&rft_id=info:doi/10.1109/CDC.2007.4434208&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_liu_38861%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424414987&rft.eisbn_list=1424414989&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4434208&rfr_iscdi=true |