A robust particle filter for state estimation - with convergence results

Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itsel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiao-Li Hu, Schon, T.B., Ljung, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue
container_start_page 312
container_title
container_volume
creator Xiao-Li Hu
Schon, T.B.
Ljung, L.
description Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.
doi_str_mv 10.1109/CDC.2007.4434208
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_4434208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4434208</ieee_id><sourcerecordid>oai_DiVA_org_liu_38861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1271-721639d0389a50478e884f9dd853324f8239a90d62e3a912c978a56c2ed439ff3</originalsourceid><addsrcrecordid>eNpVkE1LAzEYhCMqWGvvgpf8ALe--egmOS7baoWCF_W6pLtvamTtLknW4r93oUXwNAw8DDNDyC2DOWNgHsplOecAai6lkBz0GZkZpZnkUjJptDr_5xVckAkwwzLOWX5FrmP8BAANeT4h64KGbjvERHsbkq9bpM63CQN1XaAx2YQUY_JfNvluTzN68OmD1t3-G8MO9zXSgHFoU7whl862EWcnnZK3x9Vruc42L0_PZbHJPOOKZWqsIEwDQhu7AKk0ai2daRq9EIJLp7kw1kCTcxTWMF6PQ-wirzk2UhjnxJTcH3PjAfthW_Vh7BZ-qs76aunfi6oLu6r1QyW0ztmI3x1xj4h_8Ok38Qvq5l2j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A robust particle filter for state estimation - with convergence results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiao-Li Hu ; Schon, T.B. ; Ljung, L.</creator><creatorcontrib>Xiao-Li Hu ; Schon, T.B. ; Ljung, L.</creatorcontrib><description>Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424414970</identifier><identifier>ISBN: 1424414970</identifier><identifier>ISBN: 9781424414987</identifier><identifier>ISBN: 1424414989</identifier><identifier>EISBN: 9781424414987</identifier><identifier>EISBN: 1424414989</identifier><identifier>DOI: 10.1109/CDC.2007.4434208</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Equations ; Filtering ; Noise measurement ; Nonlinear dynamical systems ; Nonlinear estimation ; Nonlinear systems ; Particle filtering ; Particle filters ; Robustness ; State estimation ; Stochastic processes ; TECHNOLOGY ; TEKNIKVETENSKAP ; Time measurement</subject><ispartof>2007 46th IEEE Conference on Decision and Control, 2007, p.312-317</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4434208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,310,311,782,786,791,792,887,2062,4054,4055,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4434208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-38861$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao-Li Hu</creatorcontrib><creatorcontrib>Schon, T.B.</creatorcontrib><creatorcontrib>Ljung, L.</creatorcontrib><title>A robust particle filter for state estimation - with convergence results</title><title>2007 46th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.</description><subject>Convergence</subject><subject>Equations</subject><subject>Filtering</subject><subject>Noise measurement</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear estimation</subject><subject>Nonlinear systems</subject><subject>Particle filtering</subject><subject>Particle filters</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Stochastic processes</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Time measurement</subject><issn>0191-2216</issn><isbn>9781424414970</isbn><isbn>1424414970</isbn><isbn>9781424414987</isbn><isbn>1424414989</isbn><isbn>9781424414987</isbn><isbn>1424414989</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1LAzEYhCMqWGvvgpf8ALe--egmOS7baoWCF_W6pLtvamTtLknW4r93oUXwNAw8DDNDyC2DOWNgHsplOecAai6lkBz0GZkZpZnkUjJptDr_5xVckAkwwzLOWX5FrmP8BAANeT4h64KGbjvERHsbkq9bpM63CQN1XaAx2YQUY_JfNvluTzN68OmD1t3-G8MO9zXSgHFoU7whl862EWcnnZK3x9Vruc42L0_PZbHJPOOKZWqsIEwDQhu7AKk0ai2daRq9EIJLp7kw1kCTcxTWMF6PQ-wirzk2UhjnxJTcH3PjAfthW_Vh7BZ-qs76aunfi6oLu6r1QyW0ztmI3x1xj4h_8Ok38Qvq5l2j</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Xiao-Li Hu</creator><creator>Schon, T.B.</creator><creator>Ljung, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DG8</scope></search><sort><creationdate>200712</creationdate><title>A robust particle filter for state estimation - with convergence results</title><author>Xiao-Li Hu ; Schon, T.B. ; Ljung, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1271-721639d0389a50478e884f9dd853324f8239a90d62e3a912c978a56c2ed439ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Convergence</topic><topic>Equations</topic><topic>Filtering</topic><topic>Noise measurement</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear estimation</topic><topic>Nonlinear systems</topic><topic>Particle filtering</topic><topic>Particle filters</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Stochastic processes</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao-Li Hu</creatorcontrib><creatorcontrib>Schon, T.B.</creatorcontrib><creatorcontrib>Ljung, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Linköpings universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao-Li Hu</au><au>Schon, T.B.</au><au>Ljung, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A robust particle filter for state estimation - with convergence results</atitle><btitle>2007 46th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2007-12</date><risdate>2007</risdate><spage>312</spage><epage>317</epage><pages>312-317</pages><issn>0191-2216</issn><isbn>9781424414970</isbn><isbn>1424414970</isbn><isbn>9781424414987</isbn><isbn>1424414989</isbn><eisbn>9781424414987</eisbn><eisbn>1424414989</eisbn><abstract>Particle filters are becoming increasingly important and useful for state estimation in nonlinear systems. Many filter versions have been suggested, and several results on convergence of filter properties have been reported. However, apparently a result on the convergence of the state estimate itself has been lacking. This contribution describes a general framework for particle filters for state estimation, as well as a robustified filter version. For this version a quite general convergence result is established. In particular, it is proved that the particle filter estimate convergences w.p.1 to the optimal estimate, as the number of particles tends to infinity.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2007.4434208</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2007 46th IEEE Conference on Decision and Control, 2007, p.312-317
issn 0191-2216
language eng
recordid cdi_ieee_primary_4434208
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Equations
Filtering
Noise measurement
Nonlinear dynamical systems
Nonlinear estimation
Nonlinear systems
Particle filtering
Particle filters
Robustness
State estimation
Stochastic processes
TECHNOLOGY
TEKNIKVETENSKAP
Time measurement
title A robust particle filter for state estimation - with convergence results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T05%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20robust%20particle%20filter%20for%20state%20estimation%20-%20with%20convergence%20results&rft.btitle=2007%2046th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Xiao-Li%20Hu&rft.date=2007-12&rft.spage=312&rft.epage=317&rft.pages=312-317&rft.issn=0191-2216&rft.isbn=9781424414970&rft.isbn_list=1424414970&rft.isbn_list=9781424414987&rft.isbn_list=1424414989&rft_id=info:doi/10.1109/CDC.2007.4434208&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_liu_38861%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424414987&rft.eisbn_list=1424414989&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4434208&rfr_iscdi=true