Hand Postures Recognition System Using Artificial Neural Networks Implemented in FPGA

Gesture recognition is a domain of grate interest of our days due to the multiple application possibilities, from the spatial or subaquatic robots manipulation, to the sign language used for communication by the peoples with hearing or speech disabilities. This paper shows an application of the arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oniga, S., Tisan, A., Mic, D., Buchman, A., Vida-Ratiu, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue
container_start_page 507
container_title
container_volume
creator Oniga, S.
Tisan, A.
Mic, D.
Buchman, A.
Vida-Ratiu, A.
description Gesture recognition is a domain of grate interest of our days due to the multiple application possibilities, from the spatial or subaquatic robots manipulation, to the sign language used for communication by the peoples with hearing or speech disabilities. This paper shows an application of the artificial neural networks (ANN) implemented in field programmable gate arrays (FPGA) for the hand static gestures (postures) recognition. The adopted recognition method uses an ANN structured on two levels. The first level, a feedforward ANN trained using supervised Hebbian algorithm, is used for input data preprocessing. The second one, used for data classification is a competitive ANN. Using an ANN for input data preprocessing offers flexibility regarding the implementation of a preprocessing method. This combination of two ANN leads to 100% recognition rate for the training set and two other sets of test.
doi_str_mv 10.1109/ISSE.2007.4432909
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4432909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4432909</ieee_id><sourcerecordid>4432909</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7706b4df5243d5cc9790184d6f4b1b6405281e3b0322fbcf2262ef01a6dcab033</originalsourceid><addsrcrecordid>eNotkM1qAjEURgNtoWJ9gNJNXmDsvTeZxFmK-DMgrdS6lvm5kbTOjEwixbevtK4OfIvDxxHiGWGMCNlrvt3OxwRgx1oryiC7E6PMTlCT1kho9b0YEBpMKKXJoxiF8AUAaI1GUAOxWxVtLTddiOeeg_zgqju0PvquldtLiNzIXfDtQU776J2vfHGUb3zu_xB_uv47yLw5HbnhNnItfSsXm-X0STy44hh4dONQ7Bbzz9kqWb8v89l0nXi0aUysBVPq2qWkVZ1WVWYzwImujdMllkbD9TKyKkERubJyRIbYARamrorrqobi5d_rmXl_6n1T9Jf9LYT6BanxUSM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hand Postures Recognition System Using Artificial Neural Networks Implemented in FPGA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oniga, S. ; Tisan, A. ; Mic, D. ; Buchman, A. ; Vida-Ratiu, A.</creator><creatorcontrib>Oniga, S. ; Tisan, A. ; Mic, D. ; Buchman, A. ; Vida-Ratiu, A.</creatorcontrib><description>Gesture recognition is a domain of grate interest of our days due to the multiple application possibilities, from the spatial or subaquatic robots manipulation, to the sign language used for communication by the peoples with hearing or speech disabilities. This paper shows an application of the artificial neural networks (ANN) implemented in field programmable gate arrays (FPGA) for the hand static gestures (postures) recognition. The adopted recognition method uses an ANN structured on two levels. The first level, a feedforward ANN trained using supervised Hebbian algorithm, is used for input data preprocessing. The second one, used for data classification is a competitive ANN. Using an ANN for input data preprocessing offers flexibility regarding the implementation of a preprocessing method. This combination of two ANN leads to 100% recognition rate for the training set and two other sets of test.</description><identifier>ISSN: 2161-2528</identifier><identifier>ISBN: 9781424412174</identifier><identifier>ISBN: 142441217X</identifier><identifier>DOI: 10.1109/ISSE.2007.4432909</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Auditory system ; Data preprocessing ; Field programmable gate arrays ; Handicapped aids ; Humans ; Neural networks ; Pattern recognition ; Speech recognition ; Surgery</subject><ispartof>2007 30th International Spring Seminar on Electronics Technology (ISSE), 2007, p.507-512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4432909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4432909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oniga, S.</creatorcontrib><creatorcontrib>Tisan, A.</creatorcontrib><creatorcontrib>Mic, D.</creatorcontrib><creatorcontrib>Buchman, A.</creatorcontrib><creatorcontrib>Vida-Ratiu, A.</creatorcontrib><title>Hand Postures Recognition System Using Artificial Neural Networks Implemented in FPGA</title><title>2007 30th International Spring Seminar on Electronics Technology (ISSE)</title><addtitle>ISSE</addtitle><description>Gesture recognition is a domain of grate interest of our days due to the multiple application possibilities, from the spatial or subaquatic robots manipulation, to the sign language used for communication by the peoples with hearing or speech disabilities. This paper shows an application of the artificial neural networks (ANN) implemented in field programmable gate arrays (FPGA) for the hand static gestures (postures) recognition. The adopted recognition method uses an ANN structured on two levels. The first level, a feedforward ANN trained using supervised Hebbian algorithm, is used for input data preprocessing. The second one, used for data classification is a competitive ANN. Using an ANN for input data preprocessing offers flexibility regarding the implementation of a preprocessing method. This combination of two ANN leads to 100% recognition rate for the training set and two other sets of test.</description><subject>Artificial neural networks</subject><subject>Auditory system</subject><subject>Data preprocessing</subject><subject>Field programmable gate arrays</subject><subject>Handicapped aids</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Speech recognition</subject><subject>Surgery</subject><issn>2161-2528</issn><isbn>9781424412174</isbn><isbn>142441217X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1qAjEURgNtoWJ9gNJNXmDsvTeZxFmK-DMgrdS6lvm5kbTOjEwixbevtK4OfIvDxxHiGWGMCNlrvt3OxwRgx1oryiC7E6PMTlCT1kho9b0YEBpMKKXJoxiF8AUAaI1GUAOxWxVtLTddiOeeg_zgqju0PvquldtLiNzIXfDtQU776J2vfHGUb3zu_xB_uv47yLw5HbnhNnItfSsXm-X0STy44hh4dONQ7Bbzz9kqWb8v89l0nXi0aUysBVPq2qWkVZ1WVWYzwImujdMllkbD9TKyKkERubJyRIbYARamrorrqobi5d_rmXl_6n1T9Jf9LYT6BanxUSM</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Oniga, S.</creator><creator>Tisan, A.</creator><creator>Mic, D.</creator><creator>Buchman, A.</creator><creator>Vida-Ratiu, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Hand Postures Recognition System Using Artificial Neural Networks Implemented in FPGA</title><author>Oniga, S. ; Tisan, A. ; Mic, D. ; Buchman, A. ; Vida-Ratiu, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7706b4df5243d5cc9790184d6f4b1b6405281e3b0322fbcf2262ef01a6dcab033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial neural networks</topic><topic>Auditory system</topic><topic>Data preprocessing</topic><topic>Field programmable gate arrays</topic><topic>Handicapped aids</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Speech recognition</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Oniga, S.</creatorcontrib><creatorcontrib>Tisan, A.</creatorcontrib><creatorcontrib>Mic, D.</creatorcontrib><creatorcontrib>Buchman, A.</creatorcontrib><creatorcontrib>Vida-Ratiu, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oniga, S.</au><au>Tisan, A.</au><au>Mic, D.</au><au>Buchman, A.</au><au>Vida-Ratiu, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hand Postures Recognition System Using Artificial Neural Networks Implemented in FPGA</atitle><btitle>2007 30th International Spring Seminar on Electronics Technology (ISSE)</btitle><stitle>ISSE</stitle><date>2007-05</date><risdate>2007</risdate><spage>507</spage><epage>512</epage><pages>507-512</pages><issn>2161-2528</issn><isbn>9781424412174</isbn><isbn>142441217X</isbn><abstract>Gesture recognition is a domain of grate interest of our days due to the multiple application possibilities, from the spatial or subaquatic robots manipulation, to the sign language used for communication by the peoples with hearing or speech disabilities. This paper shows an application of the artificial neural networks (ANN) implemented in field programmable gate arrays (FPGA) for the hand static gestures (postures) recognition. The adopted recognition method uses an ANN structured on two levels. The first level, a feedforward ANN trained using supervised Hebbian algorithm, is used for input data preprocessing. The second one, used for data classification is a competitive ANN. Using an ANN for input data preprocessing offers flexibility regarding the implementation of a preprocessing method. This combination of two ANN leads to 100% recognition rate for the training set and two other sets of test.</abstract><pub>IEEE</pub><doi>10.1109/ISSE.2007.4432909</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-2528
ispartof 2007 30th International Spring Seminar on Electronics Technology (ISSE), 2007, p.507-512
issn 2161-2528
language eng
recordid cdi_ieee_primary_4432909
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Auditory system
Data preprocessing
Field programmable gate arrays
Handicapped aids
Humans
Neural networks
Pattern recognition
Speech recognition
Surgery
title Hand Postures Recognition System Using Artificial Neural Networks Implemented in FPGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hand%20Postures%20Recognition%20System%20Using%20Artificial%20Neural%20Networks%20Implemented%20in%20FPGA&rft.btitle=2007%2030th%20International%20Spring%20Seminar%20on%20Electronics%20Technology%20(ISSE)&rft.au=Oniga,%20S.&rft.date=2007-05&rft.spage=507&rft.epage=512&rft.pages=507-512&rft.issn=2161-2528&rft.isbn=9781424412174&rft.isbn_list=142441217X&rft_id=info:doi/10.1109/ISSE.2007.4432909&rft_dat=%3Cieee_6IE%3E4432909%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4432909&rfr_iscdi=true