Robust speech recognition using noise suppression based on multiple composite models and multi-pass search

This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jitsuhiro, Takatoshi, Toriyama, Tomoji, Kogure, Kiyoshi
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 53
container_title
container_volume
creator Jitsuhiro, Takatoshi
Toriyama, Tomoji
Kogure, Kiyoshi
description This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.
doi_str_mv 10.1109/ASRU.2007.4430083
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4430083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4430083</ieee_id><sourcerecordid>4430083</sourcerecordid><originalsourceid>FETCH-LOGICAL-i171t-b9e4eb8dfcc317afb8d0cbaa8ebf9211116118e0d994d638ae44636cf2f88b8c3</originalsourceid><addsrcrecordid>eNo1UEtqwzAUVCmFtqkPULrRBZzqWYosL0PoDwKFtFkHSX5OFGxL-NmL3r4pSWczP5jFMPYIYg4gqufl12Y7L4Qo50pJIYy8YvegCqWgVHpxzbKqNP9-UdyyjOgohIBSK9Dqjh030U00ckqI_sAH9HHfhzHEnk8U-j3vYyDkNKU0INFf7ixhzU-im9oxpBa5j12KFEbkXayxJW77-tzmyRJxQjv4wwO7aWxLmF14xravL9-r93z9-faxWq7zACWMuatQoTN1472E0jYnKbyz1qBrqgJO0AAGRV1VqtbSWFRKS-2bojHGGS9n7Om8GxBxl4bQ2eFnd7lH_gKuZlwC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jitsuhiro, Takatoshi ; Toriyama, Tomoji ; Kogure, Kiyoshi</creator><creatorcontrib>Jitsuhiro, Takatoshi ; Toriyama, Tomoji ; Kogure, Kiyoshi</creatorcontrib><description>This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.</description><identifier>ISBN: 9781424417452</identifier><identifier>ISBN: 1424417457</identifier><identifier>EISBN: 1424417465</identifier><identifier>EISBN: 9781424417469</identifier><identifier>DOI: 10.1109/ASRU.2007.4430083</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Acoustic noise ; E-Nightingale project ; Laboratories ; Medical services ; Microphones ; model composition ; multi-pass search ; Noise robustness ; noise suppression ; Signal detection ; Speech analysis ; Speech enhancement ; Speech recognition ; Working environment noise</subject><ispartof>2007 IEEE Workshop on Automatic Speech Recognition &amp; Understanding (ASRU), 2007, p.53-58</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4430083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4430083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jitsuhiro, Takatoshi</creatorcontrib><creatorcontrib>Toriyama, Tomoji</creatorcontrib><creatorcontrib>Kogure, Kiyoshi</creatorcontrib><title>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</title><title>2007 IEEE Workshop on Automatic Speech Recognition &amp; Understanding (ASRU)</title><addtitle>ASRU</addtitle><description>This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.</description><subject>Acoustic noise</subject><subject>E-Nightingale project</subject><subject>Laboratories</subject><subject>Medical services</subject><subject>Microphones</subject><subject>model composition</subject><subject>multi-pass search</subject><subject>Noise robustness</subject><subject>noise suppression</subject><subject>Signal detection</subject><subject>Speech analysis</subject><subject>Speech enhancement</subject><subject>Speech recognition</subject><subject>Working environment noise</subject><isbn>9781424417452</isbn><isbn>1424417457</isbn><isbn>1424417465</isbn><isbn>9781424417469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtqwzAUVCmFtqkPULrRBZzqWYosL0PoDwKFtFkHSX5OFGxL-NmL3r4pSWczP5jFMPYIYg4gqufl12Y7L4Qo50pJIYy8YvegCqWgVHpxzbKqNP9-UdyyjOgohIBSK9Dqjh030U00ckqI_sAH9HHfhzHEnk8U-j3vYyDkNKU0INFf7ixhzU-im9oxpBa5j12KFEbkXayxJW77-tzmyRJxQjv4wwO7aWxLmF14xravL9-r93z9-faxWq7zACWMuatQoTN1472E0jYnKbyz1qBrqgJO0AAGRV1VqtbSWFRKS-2bojHGGS9n7Om8GxBxl4bQ2eFnd7lH_gKuZlwC</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Jitsuhiro, Takatoshi</creator><creator>Toriyama, Tomoji</creator><creator>Kogure, Kiyoshi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20070101</creationdate><title>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</title><author>Jitsuhiro, Takatoshi ; Toriyama, Tomoji ; Kogure, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i171t-b9e4eb8dfcc317afb8d0cbaa8ebf9211116118e0d994d638ae44636cf2f88b8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Acoustic noise</topic><topic>E-Nightingale project</topic><topic>Laboratories</topic><topic>Medical services</topic><topic>Microphones</topic><topic>model composition</topic><topic>multi-pass search</topic><topic>Noise robustness</topic><topic>noise suppression</topic><topic>Signal detection</topic><topic>Speech analysis</topic><topic>Speech enhancement</topic><topic>Speech recognition</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Jitsuhiro, Takatoshi</creatorcontrib><creatorcontrib>Toriyama, Tomoji</creatorcontrib><creatorcontrib>Kogure, Kiyoshi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jitsuhiro, Takatoshi</au><au>Toriyama, Tomoji</au><au>Kogure, Kiyoshi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</atitle><btitle>2007 IEEE Workshop on Automatic Speech Recognition &amp; Understanding (ASRU)</btitle><stitle>ASRU</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>53</spage><epage>58</epage><pages>53-58</pages><isbn>9781424417452</isbn><isbn>1424417457</isbn><eisbn>1424417465</eisbn><eisbn>9781424417469</eisbn><abstract>This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.</abstract><pub>IEEE</pub><doi>10.1109/ASRU.2007.4430083</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424417452
ispartof 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007, p.53-58
issn
language eng ; jpn
recordid cdi_ieee_primary_4430083
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic noise
E-Nightingale project
Laboratories
Medical services
Microphones
model composition
multi-pass search
Noise robustness
noise suppression
Signal detection
Speech analysis
Speech enhancement
Speech recognition
Working environment noise
title Robust speech recognition using noise suppression based on multiple composite models and multi-pass search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20speech%20recognition%20using%20noise%20suppression%20based%20on%20multiple%20composite%20models%20and%20multi-pass%20search&rft.btitle=2007%20IEEE%20Workshop%20on%20Automatic%20Speech%20Recognition%20&%20Understanding%20(ASRU)&rft.au=Jitsuhiro,%20Takatoshi&rft.date=2007-01-01&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.isbn=9781424417452&rft.isbn_list=1424417457&rft_id=info:doi/10.1109/ASRU.2007.4430083&rft_dat=%3Cieee_6IE%3E4430083%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424417465&rft.eisbn_list=9781424417469&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4430083&rfr_iscdi=true