Robust speech recognition using noise suppression based on multiple composite models and multi-pass search
This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is spe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | |
container_volume | |
creator | Jitsuhiro, Takatoshi Toriyama, Tomoji Kogure, Kiyoshi |
description | This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method. |
doi_str_mv | 10.1109/ASRU.2007.4430083 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4430083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4430083</ieee_id><sourcerecordid>4430083</sourcerecordid><originalsourceid>FETCH-LOGICAL-i171t-b9e4eb8dfcc317afb8d0cbaa8ebf9211116118e0d994d638ae44636cf2f88b8c3</originalsourceid><addsrcrecordid>eNo1UEtqwzAUVCmFtqkPULrRBZzqWYosL0PoDwKFtFkHSX5OFGxL-NmL3r4pSWczP5jFMPYIYg4gqufl12Y7L4Qo50pJIYy8YvegCqWgVHpxzbKqNP9-UdyyjOgohIBSK9Dqjh030U00ckqI_sAH9HHfhzHEnk8U-j3vYyDkNKU0INFf7ixhzU-im9oxpBa5j12KFEbkXayxJW77-tzmyRJxQjv4wwO7aWxLmF14xravL9-r93z9-faxWq7zACWMuatQoTN1472E0jYnKbyz1qBrqgJO0AAGRV1VqtbSWFRKS-2bojHGGS9n7Om8GxBxl4bQ2eFnd7lH_gKuZlwC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jitsuhiro, Takatoshi ; Toriyama, Tomoji ; Kogure, Kiyoshi</creator><creatorcontrib>Jitsuhiro, Takatoshi ; Toriyama, Tomoji ; Kogure, Kiyoshi</creatorcontrib><description>This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.</description><identifier>ISBN: 9781424417452</identifier><identifier>ISBN: 1424417457</identifier><identifier>EISBN: 1424417465</identifier><identifier>EISBN: 9781424417469</identifier><identifier>DOI: 10.1109/ASRU.2007.4430083</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Acoustic noise ; E-Nightingale project ; Laboratories ; Medical services ; Microphones ; model composition ; multi-pass search ; Noise robustness ; noise suppression ; Signal detection ; Speech analysis ; Speech enhancement ; Speech recognition ; Working environment noise</subject><ispartof>2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007, p.53-58</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4430083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4430083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jitsuhiro, Takatoshi</creatorcontrib><creatorcontrib>Toriyama, Tomoji</creatorcontrib><creatorcontrib>Kogure, Kiyoshi</creatorcontrib><title>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</title><title>2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)</title><addtitle>ASRU</addtitle><description>This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.</description><subject>Acoustic noise</subject><subject>E-Nightingale project</subject><subject>Laboratories</subject><subject>Medical services</subject><subject>Microphones</subject><subject>model composition</subject><subject>multi-pass search</subject><subject>Noise robustness</subject><subject>noise suppression</subject><subject>Signal detection</subject><subject>Speech analysis</subject><subject>Speech enhancement</subject><subject>Speech recognition</subject><subject>Working environment noise</subject><isbn>9781424417452</isbn><isbn>1424417457</isbn><isbn>1424417465</isbn><isbn>9781424417469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtqwzAUVCmFtqkPULrRBZzqWYosL0PoDwKFtFkHSX5OFGxL-NmL3r4pSWczP5jFMPYIYg4gqufl12Y7L4Qo50pJIYy8YvegCqWgVHpxzbKqNP9-UdyyjOgohIBSK9Dqjh030U00ckqI_sAH9HHfhzHEnk8U-j3vYyDkNKU0INFf7ixhzU-im9oxpBa5j12KFEbkXayxJW77-tzmyRJxQjv4wwO7aWxLmF14xravL9-r93z9-faxWq7zACWMuatQoTN1472E0jYnKbyz1qBrqgJO0AAGRV1VqtbSWFRKS-2bojHGGS9n7Om8GxBxl4bQ2eFnd7lH_gKuZlwC</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Jitsuhiro, Takatoshi</creator><creator>Toriyama, Tomoji</creator><creator>Kogure, Kiyoshi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20070101</creationdate><title>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</title><author>Jitsuhiro, Takatoshi ; Toriyama, Tomoji ; Kogure, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i171t-b9e4eb8dfcc317afb8d0cbaa8ebf9211116118e0d994d638ae44636cf2f88b8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Acoustic noise</topic><topic>E-Nightingale project</topic><topic>Laboratories</topic><topic>Medical services</topic><topic>Microphones</topic><topic>model composition</topic><topic>multi-pass search</topic><topic>Noise robustness</topic><topic>noise suppression</topic><topic>Signal detection</topic><topic>Speech analysis</topic><topic>Speech enhancement</topic><topic>Speech recognition</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Jitsuhiro, Takatoshi</creatorcontrib><creatorcontrib>Toriyama, Tomoji</creatorcontrib><creatorcontrib>Kogure, Kiyoshi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jitsuhiro, Takatoshi</au><au>Toriyama, Tomoji</au><au>Kogure, Kiyoshi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust speech recognition using noise suppression based on multiple composite models and multi-pass search</atitle><btitle>2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)</btitle><stitle>ASRU</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>53</spage><epage>58</epage><pages>53-58</pages><isbn>9781424417452</isbn><isbn>1424417457</isbn><eisbn>1424417465</eisbn><eisbn>9781424417469</eisbn><abstract>This paper presents robust speech recognition using a noise suppression method based on multi-model compositions and multi-pass search. In real environments, many kinds of noise signals exists, and input speech for speech recognition systems include them. Our task in the E-Nightingale project is speech recognition of voice memoranda spoken by nurses during actual work at hospitals. To obtain good recognized candidates, suppressing many kinds of noise signals at once to find target speech is important. First, before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Second, noise suppression based on models is performed using the multiple composite models selected by recognized label sequences with time alignments. We evaluated this approach using the E-Nightingale task, and the proposed method outperformed the conventional method.</abstract><pub>IEEE</pub><doi>10.1109/ASRU.2007.4430083</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424417452 |
ispartof | 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007, p.53-58 |
issn | |
language | eng ; jpn |
recordid | cdi_ieee_primary_4430083 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic noise E-Nightingale project Laboratories Medical services Microphones model composition multi-pass search Noise robustness noise suppression Signal detection Speech analysis Speech enhancement Speech recognition Working environment noise |
title | Robust speech recognition using noise suppression based on multiple composite models and multi-pass search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20speech%20recognition%20using%20noise%20suppression%20based%20on%20multiple%20composite%20models%20and%20multi-pass%20search&rft.btitle=2007%20IEEE%20Workshop%20on%20Automatic%20Speech%20Recognition%20&%20Understanding%20(ASRU)&rft.au=Jitsuhiro,%20Takatoshi&rft.date=2007-01-01&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.isbn=9781424417452&rft.isbn_list=1424417457&rft_id=info:doi/10.1109/ASRU.2007.4430083&rft_dat=%3Cieee_6IE%3E4430083%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424417465&rft.eisbn_list=9781424417469&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4430083&rfr_iscdi=true |