Using social effects to guide tracking in complex scenes

This paper presents a new methodology for improving the tracking of multiple targets in complex scenes. The new method,Motion Parameter Sharing, incorporates social motion information into tracking predictions. This is achieved by allowing a tracker to share motion estimates within groups of targets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: French, A.P., Naeem, A., Dryden, I.L., Pridmore, T.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue
container_start_page 212
container_title
container_volume
creator French, A.P.
Naeem, A.
Dryden, I.L.
Pridmore, T.P.
description This paper presents a new methodology for improving the tracking of multiple targets in complex scenes. The new method,Motion Parameter Sharing, incorporates social motion information into tracking predictions. This is achieved by allowing a tracker to share motion estimates within groups of targets which have previously been moving in a coordinated fashion. The method is intuitive and, as well as aiding the prediction estimates, allows the implicit formation of 'social groups' of targets as a side effect of the process. The underlying reasoning and method are presented, as well as a description of how the method fits into the framework of a typical Bayesian tracking system. This is followed by some preliminary results which suggest the method is more accurate and robust than algorithms which do not incorporate the social information available in multiple target scenarios.
doi_str_mv 10.1109/AVSS.2007.4425312
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4425312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4425312</ieee_id><sourcerecordid>4425312</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7005dabf67ec41065548b3ade3d903cd61dd6e3d8c87a281d1ca8acec55272443</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdEUGseQLzZF0jcs_-5LEWtUPCi1tuyPXtSVtOkZCPo2xuxzs3wwTDMMHYLogIQ9f38bb2upBCu0loaBfKMFbXzoKXWYGvrztn1Pxh3yYqc38UkVSsj5RXzm5y6Pc89ptByahrCMfOx5_vPFImPQ8CP30DqOPaHY0tfPCN1lG_YRRPaTMXJZ2zz-PC6WJarl6fnxXxVJnBmLJ0QJoZdYx2hBmGN0X6nQiQVa6EwWojRTuDRuyA9RMDgAxIaI900W83Y3V9vIqLtcUiHMHxvT2fVDxbmR5E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using social effects to guide tracking in complex scenes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>French, A.P. ; Naeem, A. ; Dryden, I.L. ; Pridmore, T.P.</creator><creatorcontrib>French, A.P. ; Naeem, A. ; Dryden, I.L. ; Pridmore, T.P.</creatorcontrib><description>This paper presents a new methodology for improving the tracking of multiple targets in complex scenes. The new method,Motion Parameter Sharing, incorporates social motion information into tracking predictions. This is achieved by allowing a tracker to share motion estimates within groups of targets which have previously been moving in a coordinated fashion. The method is intuitive and, as well as aiding the prediction estimates, allows the implicit formation of 'social groups' of targets as a side effect of the process. The underlying reasoning and method are presented, as well as a description of how the method fits into the framework of a typical Bayesian tracking system. This is followed by some preliminary results which suggest the method is more accurate and robust than algorithms which do not incorporate the social information available in multiple target scenarios.</description><identifier>ISBN: 1424416957</identifier><identifier>ISBN: 9781424416950</identifier><identifier>EISBN: 9781424416967</identifier><identifier>EISBN: 1424416965</identifier><identifier>DOI: 10.1109/AVSS.2007.4425312</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer science ; Image analysis ; Image sequence analysis ; Image sequences ; Layout ; Motion estimation ; Robustness ; Space stations ; Target tracking</subject><ispartof>2007 IEEE Conference on Advanced Video and Signal Based Surveillance, 2007, p.212-217</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4425312$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4425312$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>French, A.P.</creatorcontrib><creatorcontrib>Naeem, A.</creatorcontrib><creatorcontrib>Dryden, I.L.</creatorcontrib><creatorcontrib>Pridmore, T.P.</creatorcontrib><title>Using social effects to guide tracking in complex scenes</title><title>2007 IEEE Conference on Advanced Video and Signal Based Surveillance</title><addtitle>AVSS</addtitle><description>This paper presents a new methodology for improving the tracking of multiple targets in complex scenes. The new method,Motion Parameter Sharing, incorporates social motion information into tracking predictions. This is achieved by allowing a tracker to share motion estimates within groups of targets which have previously been moving in a coordinated fashion. The method is intuitive and, as well as aiding the prediction estimates, allows the implicit formation of 'social groups' of targets as a side effect of the process. The underlying reasoning and method are presented, as well as a description of how the method fits into the framework of a typical Bayesian tracking system. This is followed by some preliminary results which suggest the method is more accurate and robust than algorithms which do not incorporate the social information available in multiple target scenarios.</description><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Image analysis</subject><subject>Image sequence analysis</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Motion estimation</subject><subject>Robustness</subject><subject>Space stations</subject><subject>Target tracking</subject><isbn>1424416957</isbn><isbn>9781424416950</isbn><isbn>9781424416967</isbn><isbn>1424416965</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91Kw0AUhFdEUGseQLzZF0jcs_-5LEWtUPCi1tuyPXtSVtOkZCPo2xuxzs3wwTDMMHYLogIQ9f38bb2upBCu0loaBfKMFbXzoKXWYGvrztn1Pxh3yYqc38UkVSsj5RXzm5y6Pc89ptByahrCMfOx5_vPFImPQ8CP30DqOPaHY0tfPCN1lG_YRRPaTMXJZ2zz-PC6WJarl6fnxXxVJnBmLJ0QJoZdYx2hBmGN0X6nQiQVa6EwWojRTuDRuyA9RMDgAxIaI900W83Y3V9vIqLtcUiHMHxvT2fVDxbmR5E</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>French, A.P.</creator><creator>Naeem, A.</creator><creator>Dryden, I.L.</creator><creator>Pridmore, T.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Using social effects to guide tracking in complex scenes</title><author>French, A.P. ; Naeem, A. ; Dryden, I.L. ; Pridmore, T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7005dabf67ec41065548b3ade3d903cd61dd6e3d8c87a281d1ca8acec55272443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Image analysis</topic><topic>Image sequence analysis</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Motion estimation</topic><topic>Robustness</topic><topic>Space stations</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>French, A.P.</creatorcontrib><creatorcontrib>Naeem, A.</creatorcontrib><creatorcontrib>Dryden, I.L.</creatorcontrib><creatorcontrib>Pridmore, T.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>French, A.P.</au><au>Naeem, A.</au><au>Dryden, I.L.</au><au>Pridmore, T.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using social effects to guide tracking in complex scenes</atitle><btitle>2007 IEEE Conference on Advanced Video and Signal Based Surveillance</btitle><stitle>AVSS</stitle><date>2007-09</date><risdate>2007</risdate><spage>212</spage><epage>217</epage><pages>212-217</pages><isbn>1424416957</isbn><isbn>9781424416950</isbn><eisbn>9781424416967</eisbn><eisbn>1424416965</eisbn><abstract>This paper presents a new methodology for improving the tracking of multiple targets in complex scenes. The new method,Motion Parameter Sharing, incorporates social motion information into tracking predictions. This is achieved by allowing a tracker to share motion estimates within groups of targets which have previously been moving in a coordinated fashion. The method is intuitive and, as well as aiding the prediction estimates, allows the implicit formation of 'social groups' of targets as a side effect of the process. The underlying reasoning and method are presented, as well as a description of how the method fits into the framework of a typical Bayesian tracking system. This is followed by some preliminary results which suggest the method is more accurate and robust than algorithms which do not incorporate the social information available in multiple target scenarios.</abstract><pub>IEEE</pub><doi>10.1109/AVSS.2007.4425312</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424416957
ispartof 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, 2007, p.212-217
issn
language eng
recordid cdi_ieee_primary_4425312
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Computer science
Image analysis
Image sequence analysis
Image sequences
Layout
Motion estimation
Robustness
Space stations
Target tracking
title Using social effects to guide tracking in complex scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20social%20effects%20to%20guide%20tracking%20in%20complex%20scenes&rft.btitle=2007%20IEEE%20Conference%20on%20Advanced%20Video%20and%20Signal%20Based%20Surveillance&rft.au=French,%20A.P.&rft.date=2007-09&rft.spage=212&rft.epage=217&rft.pages=212-217&rft.isbn=1424416957&rft.isbn_list=9781424416950&rft_id=info:doi/10.1109/AVSS.2007.4425312&rft_dat=%3Cieee_6IE%3E4425312%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424416967&rft.eisbn_list=1424416965&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4425312&rfr_iscdi=true