To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation
A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investiga...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | |
container_start_page | 193 |
container_title | |
container_volume | |
creator | Savenko, P.O. Tkach, M.D. |
description | A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given. |
doi_str_mv | 10.1109/ICATT.2007.4425154 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4425154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4425154</ieee_id><sourcerecordid>4425154</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-789bc4ec30c7217ac0bffff2b1421e759105a2d5ee0cb6ca24cb83c5bd7c9a033</originalsourceid><addsrcrecordid>eNo1UMtOwzAQtISQgNIfgIt_IMXPujmiipeExCWcK9vZgFFiB9tp6S_xlRha9jLa2dlZzSJ0RcmCUlLfPK1vm2bBCFELIZikUpygCyqYEFSuhDxD85Q-SCle8yWR5-i7CdhPA0RndY9T6Kfsgsehw2MMpocBl24A7av0OekIWI9l8OUG_a-LUBZ98B7eCrcF3DnvcoHJ2z_NzuX3okoj2IxzwHkX8FZHp4t9wmaPh9BOPfx6tWEqJO7CFB1EnKP2qQvxcOwSnXa6TzA_4gy93t8168fq-eWh5H6uHFUyV2pVGyvAcmIVo0pbYrpSzJQ3UFCypkRq1koAYs3SaiasWXErTatsrQnnM3R98HUAsBljyRr3m-M7-Q9KpnHA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Savenko, P.O. ; Tkach, M.D.</creator><creatorcontrib>Savenko, P.O. ; Tkach, M.D.</creatorcontrib><description>A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.</description><identifier>ISBN: 1424415845</identifier><identifier>ISBN: 9781424415847</identifier><identifier>DOI: 10.1109/ICATT.2007.4425154</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Antenna theory ; Approximation algorithms ; continuous components of spectrum ; Gold ; Hilbert space ; holomorphic operator-function ; implicit function method ; Integral equations ; Inverse problems ; Mathematics ; Nonlinear equations ; Nonlinear spectral problem ; Prototypes</subject><ispartof>2007 6th International Conference on Antenna Theory and Techniques, 2007, p.193-195</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4425154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4425154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Savenko, P.O.</creatorcontrib><creatorcontrib>Tkach, M.D.</creatorcontrib><title>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</title><title>2007 6th International Conference on Antenna Theory and Techniques</title><addtitle>ICATT</addtitle><description>A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.</description><subject>Acoustics</subject><subject>Antenna theory</subject><subject>Approximation algorithms</subject><subject>continuous components of spectrum</subject><subject>Gold</subject><subject>Hilbert space</subject><subject>holomorphic operator-function</subject><subject>implicit function method</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Nonlinear spectral problem</subject><subject>Prototypes</subject><isbn>1424415845</isbn><isbn>9781424415847</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQtISQgNIfgIt_IMXPujmiipeExCWcK9vZgFFiB9tp6S_xlRha9jLa2dlZzSJ0RcmCUlLfPK1vm2bBCFELIZikUpygCyqYEFSuhDxD85Q-SCle8yWR5-i7CdhPA0RndY9T6Kfsgsehw2MMpocBl24A7av0OekIWI9l8OUG_a-LUBZ98B7eCrcF3DnvcoHJ2z_NzuX3okoj2IxzwHkX8FZHp4t9wmaPh9BOPfx6tWEqJO7CFB1EnKP2qQvxcOwSnXa6TzA_4gy93t8168fq-eWh5H6uHFUyV2pVGyvAcmIVo0pbYrpSzJQ3UFCypkRq1koAYs3SaiasWXErTatsrQnnM3R98HUAsBljyRr3m-M7-Q9KpnHA</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Savenko, P.O.</creator><creator>Tkach, M.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</title><author>Savenko, P.O. ; Tkach, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-789bc4ec30c7217ac0bffff2b1421e759105a2d5ee0cb6ca24cb83c5bd7c9a033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acoustics</topic><topic>Antenna theory</topic><topic>Approximation algorithms</topic><topic>continuous components of spectrum</topic><topic>Gold</topic><topic>Hilbert space</topic><topic>holomorphic operator-function</topic><topic>implicit function method</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Nonlinear spectral problem</topic><topic>Prototypes</topic><toplevel>online_resources</toplevel><creatorcontrib>Savenko, P.O.</creatorcontrib><creatorcontrib>Tkach, M.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Savenko, P.O.</au><au>Tkach, M.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</atitle><btitle>2007 6th International Conference on Antenna Theory and Techniques</btitle><stitle>ICATT</stitle><date>2007-09</date><risdate>2007</risdate><spage>193</spage><epage>195</epage><pages>193-195</pages><isbn>1424415845</isbn><isbn>9781424415847</isbn><abstract>A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.</abstract><pub>IEEE</pub><doi>10.1109/ICATT.2007.4425154</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424415845 |
ispartof | 2007 6th International Conference on Antenna Theory and Techniques, 2007, p.193-195 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4425154 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustics Antenna theory Approximation algorithms continuous components of spectrum Gold Hilbert space holomorphic operator-function implicit function method Integral equations Inverse problems Mathematics Nonlinear equations Nonlinear spectral problem Prototypes |
title | To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=To%20numerical%20solution%20of%20problem%20on%20mean-square%20approximation%20of%20real%20nonnegative%20finite%20function%20with%20respect%20to%20two%20variables%20by%20module%20of%20double%20fourier%20transformation&rft.btitle=2007%206th%20International%20Conference%20on%20Antenna%20Theory%20and%20Techniques&rft.au=Savenko,%20P.O.&rft.date=2007-09&rft.spage=193&rft.epage=195&rft.pages=193-195&rft.isbn=1424415845&rft.isbn_list=9781424415847&rft_id=info:doi/10.1109/ICATT.2007.4425154&rft_dat=%3Cieee_6IE%3E4425154%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4425154&rfr_iscdi=true |