To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation

A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Savenko, P.O., Tkach, M.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue
container_start_page 193
container_title
container_volume
creator Savenko, P.O.
Tkach, M.D.
description A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.
doi_str_mv 10.1109/ICATT.2007.4425154
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4425154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4425154</ieee_id><sourcerecordid>4425154</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-789bc4ec30c7217ac0bffff2b1421e759105a2d5ee0cb6ca24cb83c5bd7c9a033</originalsourceid><addsrcrecordid>eNo1UMtOwzAQtISQgNIfgIt_IMXPujmiipeExCWcK9vZgFFiB9tp6S_xlRha9jLa2dlZzSJ0RcmCUlLfPK1vm2bBCFELIZikUpygCyqYEFSuhDxD85Q-SCle8yWR5-i7CdhPA0RndY9T6Kfsgsehw2MMpocBl24A7av0OekIWI9l8OUG_a-LUBZ98B7eCrcF3DnvcoHJ2z_NzuX3okoj2IxzwHkX8FZHp4t9wmaPh9BOPfx6tWEqJO7CFB1EnKP2qQvxcOwSnXa6TzA_4gy93t8168fq-eWh5H6uHFUyV2pVGyvAcmIVo0pbYrpSzJQ3UFCypkRq1koAYs3SaiasWXErTatsrQnnM3R98HUAsBljyRr3m-M7-Q9KpnHA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Savenko, P.O. ; Tkach, M.D.</creator><creatorcontrib>Savenko, P.O. ; Tkach, M.D.</creatorcontrib><description>A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.</description><identifier>ISBN: 1424415845</identifier><identifier>ISBN: 9781424415847</identifier><identifier>DOI: 10.1109/ICATT.2007.4425154</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Antenna theory ; Approximation algorithms ; continuous components of spectrum ; Gold ; Hilbert space ; holomorphic operator-function ; implicit function method ; Integral equations ; Inverse problems ; Mathematics ; Nonlinear equations ; Nonlinear spectral problem ; Prototypes</subject><ispartof>2007 6th International Conference on Antenna Theory and Techniques, 2007, p.193-195</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4425154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4425154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Savenko, P.O.</creatorcontrib><creatorcontrib>Tkach, M.D.</creatorcontrib><title>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</title><title>2007 6th International Conference on Antenna Theory and Techniques</title><addtitle>ICATT</addtitle><description>A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.</description><subject>Acoustics</subject><subject>Antenna theory</subject><subject>Approximation algorithms</subject><subject>continuous components of spectrum</subject><subject>Gold</subject><subject>Hilbert space</subject><subject>holomorphic operator-function</subject><subject>implicit function method</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Nonlinear spectral problem</subject><subject>Prototypes</subject><isbn>1424415845</isbn><isbn>9781424415847</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQtISQgNIfgIt_IMXPujmiipeExCWcK9vZgFFiB9tp6S_xlRha9jLa2dlZzSJ0RcmCUlLfPK1vm2bBCFELIZikUpygCyqYEFSuhDxD85Q-SCle8yWR5-i7CdhPA0RndY9T6Kfsgsehw2MMpocBl24A7av0OekIWI9l8OUG_a-LUBZ98B7eCrcF3DnvcoHJ2z_NzuX3okoj2IxzwHkX8FZHp4t9wmaPh9BOPfx6tWEqJO7CFB1EnKP2qQvxcOwSnXa6TzA_4gy93t8168fq-eWh5H6uHFUyV2pVGyvAcmIVo0pbYrpSzJQ3UFCypkRq1koAYs3SaiasWXErTatsrQnnM3R98HUAsBljyRr3m-M7-Q9KpnHA</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Savenko, P.O.</creator><creator>Tkach, M.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</title><author>Savenko, P.O. ; Tkach, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-789bc4ec30c7217ac0bffff2b1421e759105a2d5ee0cb6ca24cb83c5bd7c9a033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acoustics</topic><topic>Antenna theory</topic><topic>Approximation algorithms</topic><topic>continuous components of spectrum</topic><topic>Gold</topic><topic>Hilbert space</topic><topic>holomorphic operator-function</topic><topic>implicit function method</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Nonlinear spectral problem</topic><topic>Prototypes</topic><toplevel>online_resources</toplevel><creatorcontrib>Savenko, P.O.</creatorcontrib><creatorcontrib>Tkach, M.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Savenko, P.O.</au><au>Tkach, M.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation</atitle><btitle>2007 6th International Conference on Antenna Theory and Techniques</btitle><stitle>ICATT</stitle><date>2007-09</date><risdate>2007</risdate><spage>193</spage><epage>195</epage><pages>193-195</pages><isbn>1424415845</isbn><isbn>9781424415847</isbn><abstract>A nonlinear problem on mean-square approximation of a real finite nonnegative continuous function with respect to two variables by the module of double Fourier integral dependent on two parameters is investigated. Finding the optimum solutions (prototypes of Fourier integral) is reduced to investigation and numerical solution of Hammerstein type nonlinear two-dimensional integral equation. Algorithms for numerical finding the lines of branching and branching-off solutions to this equation are constructed and justified. Numerical examples are given.</abstract><pub>IEEE</pub><doi>10.1109/ICATT.2007.4425154</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424415845
ispartof 2007 6th International Conference on Antenna Theory and Techniques, 2007, p.193-195
issn
language eng
recordid cdi_ieee_primary_4425154
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Antenna theory
Approximation algorithms
continuous components of spectrum
Gold
Hilbert space
holomorphic operator-function
implicit function method
Integral equations
Inverse problems
Mathematics
Nonlinear equations
Nonlinear spectral problem
Prototypes
title To numerical solution of problem on mean-square approximation of real nonnegative finite function with respect to two variables by module of double fourier transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=To%20numerical%20solution%20of%20problem%20on%20mean-square%20approximation%20of%20real%20nonnegative%20finite%20function%20with%20respect%20to%20two%20variables%20by%20module%20of%20double%20fourier%20transformation&rft.btitle=2007%206th%20International%20Conference%20on%20Antenna%20Theory%20and%20Techniques&rft.au=Savenko,%20P.O.&rft.date=2007-09&rft.spage=193&rft.epage=195&rft.pages=193-195&rft.isbn=1424415845&rft.isbn_list=9781424415847&rft_id=info:doi/10.1109/ICATT.2007.4425154&rft_dat=%3Cieee_6IE%3E4425154%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4425154&rfr_iscdi=true