Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability

Credit risk management is one of the most important tasks of financial institutes. Default probability is the probability that a company will go into default, or be unable to fulfill an obligation, and it is a critical information for credit administration. Binomial logit model is widely used for de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Masaru, T., Yoichi, I., Satoshi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4349
container_issue
container_start_page 4344
container_title
container_volume
creator Masaru, T.
Yoichi, I.
Satoshi, M.
description Credit risk management is one of the most important tasks of financial institutes. Default probability is the probability that a company will go into default, or be unable to fulfill an obligation, and it is a critical information for credit administration. Binomial logit model is widely used for default probability estimation. The formulas for computing covariates used in the model are designed by human experts in trial-and- error way, based on their experience. In this paper, we propose a method to design covariates. Integer-coded GA is employed and a representation of the chromosome is proposed for the purpose of optimizing the covariate. The method optimizes the covariates using the GA and estimates the coefficient of binomial logit model using Broyden-Fletcher-Goldfarb-Shanno method. The method is tested on an actual data provided for evaluation by a bank. The result of the experiment shows the method outperformed the human design.
doi_str_mv 10.1109/CEC.2007.4425038
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_4425038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4425038</ieee_id><sourcerecordid>4425038</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d0091b904f820a237b39ca83c21b1d3910cb6b0e37d1cbdbd49731a3c6ca9b43</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhOMXWGvvgpf8gV3fN0k3m6MstQoFLwreSr62jWQ3ZTcK_feuWJzLHGZ4GIaQO4QSEdRDs2pKBiBLIdgSeH1GblAwIZALgHMyQyWwAGDVxX_AlbycAqhVIWX9cU0W4_gJk8RSoBQz0q1973OwVMddGkLed1QfDkPSdk9zos6PYddTm771EHT2I00tNaFPXdCRxrQLmXbJ-UjbNFA_5tDpHFL_W3O-1V8x04lmtAkx5OMtuWp1HP3i5HPy_rR6a56Lzev6pXncFAHlMheVA1BoFIi2ZqAZl4Yrq2tuGRp0XCFYUxnwXDq0xhknlOSoua2sVkbwObn_4wbv_fYwTKuG4_Z0G_8Br4VehA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability</title><source>IEEE Electronic Library (IEL)</source><creator>Masaru, T. ; Yoichi, I. ; Satoshi, M.</creator><creatorcontrib>Masaru, T. ; Yoichi, I. ; Satoshi, M.</creatorcontrib><description>Credit risk management is one of the most important tasks of financial institutes. Default probability is the probability that a company will go into default, or be unable to fulfill an obligation, and it is a critical information for credit administration. Binomial logit model is widely used for default probability estimation. The formulas for computing covariates used in the model are designed by human experts in trial-and- error way, based on their experience. In this paper, we propose a method to design covariates. Integer-coded GA is employed and a representation of the chromosome is proposed for the purpose of optimizing the covariate. The method optimizes the covariates using the GA and estimates the coefficient of binomial logit model using Broyden-Fletcher-Goldfarb-Shanno method. The method is tested on an actual data provided for evaluation by a bank. The result of the experiment shows the method outperformed the human design.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424413397</identifier><identifier>ISBN: 9781424413393</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424413400</identifier><identifier>EISBN: 9781424413409</identifier><identifier>DOI: 10.1109/CEC.2007.4425038</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological cells ; Companies ; Design methodology ; Genetic algorithms ; Humans ; Indium tin oxide ; Optimization methods ; Research and development ; Risk management</subject><ispartof>2007 IEEE Congress on Evolutionary Computation, 2007, p.4344-4349</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4425038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,794,2054,27908,54741,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4425038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Masaru, T.</creatorcontrib><creatorcontrib>Yoichi, I.</creatorcontrib><creatorcontrib>Satoshi, M.</creatorcontrib><title>Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability</title><title>2007 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Credit risk management is one of the most important tasks of financial institutes. Default probability is the probability that a company will go into default, or be unable to fulfill an obligation, and it is a critical information for credit administration. Binomial logit model is widely used for default probability estimation. The formulas for computing covariates used in the model are designed by human experts in trial-and- error way, based on their experience. In this paper, we propose a method to design covariates. Integer-coded GA is employed and a representation of the chromosome is proposed for the purpose of optimizing the covariate. The method optimizes the covariates using the GA and estimates the coefficient of binomial logit model using Broyden-Fletcher-Goldfarb-Shanno method. The method is tested on an actual data provided for evaluation by a bank. The result of the experiment shows the method outperformed the human design.</description><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Companies</subject><subject>Design methodology</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Indium tin oxide</subject><subject>Optimization methods</subject><subject>Research and development</subject><subject>Risk management</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424413397</isbn><isbn>9781424413393</isbn><isbn>1424413400</isbn><isbn>9781424413409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEYhOMXWGvvgpf8gV3fN0k3m6MstQoFLwreSr62jWQ3ZTcK_feuWJzLHGZ4GIaQO4QSEdRDs2pKBiBLIdgSeH1GblAwIZALgHMyQyWwAGDVxX_AlbycAqhVIWX9cU0W4_gJk8RSoBQz0q1973OwVMddGkLed1QfDkPSdk9zos6PYddTm771EHT2I00tNaFPXdCRxrQLmXbJ-UjbNFA_5tDpHFL_W3O-1V8x04lmtAkx5OMtuWp1HP3i5HPy_rR6a56Lzev6pXncFAHlMheVA1BoFIi2ZqAZl4Yrq2tuGRp0XCFYUxnwXDq0xhknlOSoua2sVkbwObn_4wbv_fYwTKuG4_Z0G_8Br4VehA</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Masaru, T.</creator><creator>Yoichi, I.</creator><creator>Satoshi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability</title><author>Masaru, T. ; Yoichi, I. ; Satoshi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d0091b904f820a237b39ca83c21b1d3910cb6b0e37d1cbdbd49731a3c6ca9b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Companies</topic><topic>Design methodology</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Indium tin oxide</topic><topic>Optimization methods</topic><topic>Research and development</topic><topic>Risk management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masaru, T.</creatorcontrib><creatorcontrib>Yoichi, I.</creatorcontrib><creatorcontrib>Satoshi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Masaru, T.</au><au>Yoichi, I.</au><au>Satoshi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability</atitle><btitle>2007 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2007-09</date><risdate>2007</risdate><spage>4344</spage><epage>4349</epage><pages>4344-4349</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424413397</isbn><isbn>9781424413393</isbn><eisbn>1424413400</eisbn><eisbn>9781424413409</eisbn><abstract>Credit risk management is one of the most important tasks of financial institutes. Default probability is the probability that a company will go into default, or be unable to fulfill an obligation, and it is a critical information for credit administration. Binomial logit model is widely used for default probability estimation. The formulas for computing covariates used in the model are designed by human experts in trial-and- error way, based on their experience. In this paper, we propose a method to design covariates. Integer-coded GA is employed and a representation of the chromosome is proposed for the purpose of optimizing the covariate. The method optimizes the covariates using the GA and estimates the coefficient of binomial logit model using Broyden-Fletcher-Goldfarb-Shanno method. The method is tested on an actual data provided for evaluation by a bank. The result of the experiment shows the method outperformed the human design.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2007.4425038</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2007 IEEE Congress on Evolutionary Computation, 2007, p.4344-4349
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4425038
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Biological cells
Companies
Design methodology
Genetic algorithms
Humans
Indium tin oxide
Optimization methods
Research and development
Risk management
title Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm%20approach%20to%20design%20covariates%20of%20binomial%20logit%20model%20for%20estimation%20of%20default%20probability&rft.btitle=2007%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Masaru,%20T.&rft.date=2007-09&rft.spage=4344&rft.epage=4349&rft.pages=4344-4349&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424413397&rft.isbn_list=9781424413393&rft_id=info:doi/10.1109/CEC.2007.4425038&rft_dat=%3Cieee_RIE%3E4425038%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413400&rft.eisbn_list=9781424413409&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4425038&rfr_iscdi=true