A multiobjective non-linear dynamic programming approach for optimal biological control in soy farming via NSGA-II
The biological control of plagues in agriculture, a practice that has been growing around the world, is performed by leaving a suitable quantity of natural enemies of the plague in the farm during the finite time horizon of the farming cycle. This work proposes a multi-objective mathematical solutio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3099 |
---|---|
container_issue | |
container_start_page | 3093 |
container_title | |
container_volume | |
creator | da Cruz, A.R. Cardoso, R.T.N. Wanner, E.F. Takahashi, R.H.C. |
description | The biological control of plagues in agriculture, a practice that has been growing around the world, is performed by leaving a suitable quantity of natural enemies of the plague in the farm during the finite time horizon of the farming cycle. This work proposes a multi-objective mathematical solution for the problem of optimal biological plague control for soy farmings, considering the control cost and the cost of farming damage due to plague. The system model is non-linear with impulsive control dynamics, in order to cope with the real-problem feature of control action, that should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and elitist multiobjective genetic algorithm. The results suggest a dual plague control policy, in which the relative price of control action versus the associated additional harvesting determine the usage of either a low control action or a higher well-defined one. |
doi_str_mv | 10.1109/CEC.2007.4424866 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_4424866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4424866</ieee_id><sourcerecordid>4424866</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-417c6783a84823d27443ce1e01a4333612eff46940c7bf99d0f3b137499c3d033</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxeM_sNbeBS_5AqmTzXSzOZal1kLRgwreSjab1JTdzZJdhX57gxbn8t7jxwyPIeSOw5xzUA_lqpxnAHKOmGGR52fkhieHXCDAOZlwhZwBZPnFPxBKXiYAhWJSFh_XZDYMB0iDC-QSJyQuafvVjD5UB2tG_21pFzrW-M7qSOtjp1tvaB_DPuq29d2e6j4lbT6pC5GGfvStbmjlQxP23iRrQjfG0FDf0SEcqdPxd-3ba_r8ul6yzeaWXDndDHZ20il5f1y9lU9s-7LelMst81wuRpb6mVwWQhdYZKLOJKIwllvgGoUQOc-sc5grBCMrp1QNTlRcSFTKiBqEmJL7v7veWrvrY2oaj7vT78QPNvheYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multiobjective non-linear dynamic programming approach for optimal biological control in soy farming via NSGA-II</title><source>IEEE Electronic Library (IEL)</source><creator>da Cruz, A.R. ; Cardoso, R.T.N. ; Wanner, E.F. ; Takahashi, R.H.C.</creator><creatorcontrib>da Cruz, A.R. ; Cardoso, R.T.N. ; Wanner, E.F. ; Takahashi, R.H.C.</creatorcontrib><description>The biological control of plagues in agriculture, a practice that has been growing around the world, is performed by leaving a suitable quantity of natural enemies of the plague in the farm during the finite time horizon of the farming cycle. This work proposes a multi-objective mathematical solution for the problem of optimal biological plague control for soy farmings, considering the control cost and the cost of farming damage due to plague. The system model is non-linear with impulsive control dynamics, in order to cope with the real-problem feature of control action, that should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and elitist multiobjective genetic algorithm. The results suggest a dual plague control policy, in which the relative price of control action versus the associated additional harvesting determine the usage of either a low control action or a higher well-defined one.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424413397</identifier><identifier>ISBN: 9781424413393</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424413400</identifier><identifier>EISBN: 9781424413409</identifier><identifier>DOI: 10.1109/CEC.2007.4424866</identifier><language>eng</language><publisher>IEEE</publisher><subject>Agriculture ; Biological control systems ; Chemicals ; Cost function ; Dynamic programming ; Environmental economics ; Nonlinear control systems ; Nonlinear dynamical systems ; Optimal control ; Organisms</subject><ispartof>2007 IEEE Congress on Evolutionary Computation, 2007, p.3093-3099</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4424866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4424866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>da Cruz, A.R.</creatorcontrib><creatorcontrib>Cardoso, R.T.N.</creatorcontrib><creatorcontrib>Wanner, E.F.</creatorcontrib><creatorcontrib>Takahashi, R.H.C.</creatorcontrib><title>A multiobjective non-linear dynamic programming approach for optimal biological control in soy farming via NSGA-II</title><title>2007 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The biological control of plagues in agriculture, a practice that has been growing around the world, is performed by leaving a suitable quantity of natural enemies of the plague in the farm during the finite time horizon of the farming cycle. This work proposes a multi-objective mathematical solution for the problem of optimal biological plague control for soy farmings, considering the control cost and the cost of farming damage due to plague. The system model is non-linear with impulsive control dynamics, in order to cope with the real-problem feature of control action, that should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and elitist multiobjective genetic algorithm. The results suggest a dual plague control policy, in which the relative price of control action versus the associated additional harvesting determine the usage of either a low control action or a higher well-defined one.</description><subject>Agriculture</subject><subject>Biological control systems</subject><subject>Chemicals</subject><subject>Cost function</subject><subject>Dynamic programming</subject><subject>Environmental economics</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Optimal control</subject><subject>Organisms</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424413397</isbn><isbn>9781424413393</isbn><isbn>1424413400</isbn><isbn>9781424413409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxeM_sNbeBS_5AqmTzXSzOZal1kLRgwreSjab1JTdzZJdhX57gxbn8t7jxwyPIeSOw5xzUA_lqpxnAHKOmGGR52fkhieHXCDAOZlwhZwBZPnFPxBKXiYAhWJSFh_XZDYMB0iDC-QSJyQuafvVjD5UB2tG_21pFzrW-M7qSOtjp1tvaB_DPuq29d2e6j4lbT6pC5GGfvStbmjlQxP23iRrQjfG0FDf0SEcqdPxd-3ba_r8ul6yzeaWXDndDHZ20il5f1y9lU9s-7LelMst81wuRpb6mVwWQhdYZKLOJKIwllvgGoUQOc-sc5grBCMrp1QNTlRcSFTKiBqEmJL7v7veWrvrY2oaj7vT78QPNvheYg</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>da Cruz, A.R.</creator><creator>Cardoso, R.T.N.</creator><creator>Wanner, E.F.</creator><creator>Takahashi, R.H.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>A multiobjective non-linear dynamic programming approach for optimal biological control in soy farming via NSGA-II</title><author>da Cruz, A.R. ; Cardoso, R.T.N. ; Wanner, E.F. ; Takahashi, R.H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-417c6783a84823d27443ce1e01a4333612eff46940c7bf99d0f3b137499c3d033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agriculture</topic><topic>Biological control systems</topic><topic>Chemicals</topic><topic>Cost function</topic><topic>Dynamic programming</topic><topic>Environmental economics</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Optimal control</topic><topic>Organisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Cruz, A.R.</creatorcontrib><creatorcontrib>Cardoso, R.T.N.</creatorcontrib><creatorcontrib>Wanner, E.F.</creatorcontrib><creatorcontrib>Takahashi, R.H.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>da Cruz, A.R.</au><au>Cardoso, R.T.N.</au><au>Wanner, E.F.</au><au>Takahashi, R.H.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multiobjective non-linear dynamic programming approach for optimal biological control in soy farming via NSGA-II</atitle><btitle>2007 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2007-09</date><risdate>2007</risdate><spage>3093</spage><epage>3099</epage><pages>3093-3099</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424413397</isbn><isbn>9781424413393</isbn><eisbn>1424413400</eisbn><eisbn>9781424413409</eisbn><abstract>The biological control of plagues in agriculture, a practice that has been growing around the world, is performed by leaving a suitable quantity of natural enemies of the plague in the farm during the finite time horizon of the farming cycle. This work proposes a multi-objective mathematical solution for the problem of optimal biological plague control for soy farmings, considering the control cost and the cost of farming damage due to plague. The system model is non-linear with impulsive control dynamics, in order to cope with the real-problem feature of control action, that should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and elitist multiobjective genetic algorithm. The results suggest a dual plague control policy, in which the relative price of control action versus the associated additional harvesting determine the usage of either a low control action or a higher well-defined one.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2007.4424866</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2007 IEEE Congress on Evolutionary Computation, 2007, p.3093-3099 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_4424866 |
source | IEEE Electronic Library (IEL) |
subjects | Agriculture Biological control systems Chemicals Cost function Dynamic programming Environmental economics Nonlinear control systems Nonlinear dynamical systems Optimal control Organisms |
title | A multiobjective non-linear dynamic programming approach for optimal biological control in soy farming via NSGA-II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multiobjective%20non-linear%20dynamic%20programming%20approach%20for%20optimal%20biological%20control%20in%20soy%20farming%20via%20NSGA-II&rft.btitle=2007%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=da%20Cruz,%20A.R.&rft.date=2007-09&rft.spage=3093&rft.epage=3099&rft.pages=3093-3099&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424413397&rft.isbn_list=9781424413393&rft_id=info:doi/10.1109/CEC.2007.4424866&rft_dat=%3Cieee_RIE%3E4424866%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413400&rft.eisbn_list=9781424413409&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4424866&rfr_iscdi=true |