Study of Operator's adaptability and scale-up study for RAGA

The studies have shown that a class of recombination operators is more suitable to tackle certain problems than others. It is observed that the multi-parent recombination operator with polynomial distribution (MPX) is exploitative and the multi-parent recombination operator with lognormal distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raghuwanshi, M.M., Kakde, O.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2871
container_issue
container_start_page 2866
container_title
container_volume
creator Raghuwanshi, M.M.
Kakde, O.G.
description The studies have shown that a class of recombination operators is more suitable to tackle certain problems than others. It is observed that the multi-parent recombination operator with polynomial distribution (MPX) is exploitative and the multi-parent recombination operator with lognormal distribution (MLX) is explorative, in nature. Use of productive operators is necessary for a genetic algorithm to uncover new fitter points in the search space to improve its overall performance. Real-coded self-Adaptive GA (RAGA) uses two multi-parent recombination operators (MPX and MLX). The use of particular operator to generate offspring during evolution process depends on its ability to produce good offspring. This paper presents the effect of operator's adaptability in solving test problems. Also scale-up study analyses the performance of RAGA with increasing number of control variables.
doi_str_mv 10.1109/CEC.2007.4424835
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4424835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4424835</ieee_id><sourcerecordid>4424835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ffbbfe59ad442504ab13dd3c28a33050817b149b8cdb8b88218835181336454f3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxeMXWGvvgpfcPGWd2SRNAl6WpVahUPADvJVkk8DK6i6b7aH_vUGLc3kD7zH85hFyg1AggrmvV3VRAqhCiFJoLk_IFeZNIBcAp2SGRiADKJdn_wY36jwboA1TSn9ckkVKn5BHSIFKzMjD67T3B9pHuh3CaKd-vEvUejtM1rVdOx2o_fY0NbYLbD_Q9JuO_UhfqnV1TS6i7VJYHHVO3h9Xb_UT22zXz3W1YS0qObEYnYtBGuszuARhHXLveVNqyzlI0KgcCuN04512Wpeo83eoM_4yc0Y-J7d_d9sQwm4Y2y87HnbHFvgP9jxKHA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study of Operator's adaptability and scale-up study for RAGA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raghuwanshi, M.M. ; Kakde, O.G.</creator><creatorcontrib>Raghuwanshi, M.M. ; Kakde, O.G.</creatorcontrib><description>The studies have shown that a class of recombination operators is more suitable to tackle certain problems than others. It is observed that the multi-parent recombination operator with polynomial distribution (MPX) is exploitative and the multi-parent recombination operator with lognormal distribution (MLX) is explorative, in nature. Use of productive operators is necessary for a genetic algorithm to uncover new fitter points in the search space to improve its overall performance. Real-coded self-Adaptive GA (RAGA) uses two multi-parent recombination operators (MPX and MLX). The use of particular operator to generate offspring during evolution process depends on its ability to produce good offspring. This paper presents the effect of operator's adaptability in solving test problems. Also scale-up study analyses the performance of RAGA with increasing number of control variables.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424413397</identifier><identifier>ISBN: 9781424413393</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424413400</identifier><identifier>EISBN: 9781424413409</identifier><identifier>DOI: 10.1109/CEC.2007.4424835</identifier><language>eng</language><publisher>IEEE</publisher><subject>Evolutionary computation</subject><ispartof>2007 IEEE Congress on Evolutionary Computation, 2007, p.2866-2871</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4424835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2051,27904,54737,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4424835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raghuwanshi, M.M.</creatorcontrib><creatorcontrib>Kakde, O.G.</creatorcontrib><title>Study of Operator's adaptability and scale-up study for RAGA</title><title>2007 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The studies have shown that a class of recombination operators is more suitable to tackle certain problems than others. It is observed that the multi-parent recombination operator with polynomial distribution (MPX) is exploitative and the multi-parent recombination operator with lognormal distribution (MLX) is explorative, in nature. Use of productive operators is necessary for a genetic algorithm to uncover new fitter points in the search space to improve its overall performance. Real-coded self-Adaptive GA (RAGA) uses two multi-parent recombination operators (MPX and MLX). The use of particular operator to generate offspring during evolution process depends on its ability to produce good offspring. This paper presents the effect of operator's adaptability in solving test problems. Also scale-up study analyses the performance of RAGA with increasing number of control variables.</description><subject>Evolutionary computation</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424413397</isbn><isbn>9781424413393</isbn><isbn>1424413400</isbn><isbn>9781424413409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxeMXWGvvgpfcPGWd2SRNAl6WpVahUPADvJVkk8DK6i6b7aH_vUGLc3kD7zH85hFyg1AggrmvV3VRAqhCiFJoLk_IFeZNIBcAp2SGRiADKJdn_wY36jwboA1TSn9ckkVKn5BHSIFKzMjD67T3B9pHuh3CaKd-vEvUejtM1rVdOx2o_fY0NbYLbD_Q9JuO_UhfqnV1TS6i7VJYHHVO3h9Xb_UT22zXz3W1YS0qObEYnYtBGuszuARhHXLveVNqyzlI0KgcCuN04512Wpeo83eoM_4yc0Y-J7d_d9sQwm4Y2y87HnbHFvgP9jxKHA</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Raghuwanshi, M.M.</creator><creator>Kakde, O.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Study of Operator's adaptability and scale-up study for RAGA</title><author>Raghuwanshi, M.M. ; Kakde, O.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ffbbfe59ad442504ab13dd3c28a33050817b149b8cdb8b88218835181336454f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Evolutionary computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghuwanshi, M.M.</creatorcontrib><creatorcontrib>Kakde, O.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raghuwanshi, M.M.</au><au>Kakde, O.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study of Operator's adaptability and scale-up study for RAGA</atitle><btitle>2007 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2007-09</date><risdate>2007</risdate><spage>2866</spage><epage>2871</epage><pages>2866-2871</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424413397</isbn><isbn>9781424413393</isbn><eisbn>1424413400</eisbn><eisbn>9781424413409</eisbn><abstract>The studies have shown that a class of recombination operators is more suitable to tackle certain problems than others. It is observed that the multi-parent recombination operator with polynomial distribution (MPX) is exploitative and the multi-parent recombination operator with lognormal distribution (MLX) is explorative, in nature. Use of productive operators is necessary for a genetic algorithm to uncover new fitter points in the search space to improve its overall performance. Real-coded self-Adaptive GA (RAGA) uses two multi-parent recombination operators (MPX and MLX). The use of particular operator to generate offspring during evolution process depends on its ability to produce good offspring. This paper presents the effect of operator's adaptability in solving test problems. Also scale-up study analyses the performance of RAGA with increasing number of control variables.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2007.4424835</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2007 IEEE Congress on Evolutionary Computation, 2007, p.2866-2871
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4424835
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Evolutionary computation
title Study of Operator's adaptability and scale-up study for RAGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20of%20Operator's%20adaptability%20and%20scale-up%20study%20for%20RAGA&rft.btitle=2007%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Raghuwanshi,%20M.M.&rft.date=2007-09&rft.spage=2866&rft.epage=2871&rft.pages=2866-2871&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424413397&rft.isbn_list=9781424413393&rft_id=info:doi/10.1109/CEC.2007.4424835&rft_dat=%3Cieee_6IE%3E4424835%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413400&rft.eisbn_list=9781424413409&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4424835&rfr_iscdi=true