Computational intelligence algorithms for risk-adjusted trading strategies

This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pavlidis, N.G., Pavlidis, E.G., Epitropakis, M.G., Plagianakos, V.P., Vrahatis, M.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue
container_start_page 540
container_title
container_volume
creator Pavlidis, N.G.
Pavlidis, E.G.
Epitropakis, M.G.
Plagianakos, V.P.
Vrahatis, M.N.
description This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.
doi_str_mv 10.1109/CEC.2007.4424517
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4424517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4424517</ieee_id><sourcerecordid>4424517</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-846d6ef147e2962cb4c52ed689d0174125189e83d818377cb3466cad82854f743</originalsourceid><addsrcrecordid>eNo9kMtqwzAURNUXNE2zL3TjH7CrK13rsSwm6YNANy10FxTr2lXq2MFSFv37Gho6mxk4MAzD2B3wAoDbh2pZFYJzXSAKLEGfsRuYEoJEzs_ZDCxCzrlQF_9AWn05AW5srrX5vGaLGHd8EpYIGmfstRr2h2NyKQy967LQJ-q60FJfU-a6dhhD-trHrBnGbAzxO3d-d4yJfJZG50PfZnEKidpA8ZZdNa6LtDj5nH2slu_Vc75-e3qpHtd5EKBTblB5RQ2gJmGVqLdYl4K8MtbzaRKIEowlI70BI7WutxKVqp03wpTYaJRzdv_XG4hocxjD3o0_m9Mn8hcUF1D8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational intelligence algorithms for risk-adjusted trading strategies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pavlidis, N.G. ; Pavlidis, E.G. ; Epitropakis, M.G. ; Plagianakos, V.P. ; Vrahatis, M.N.</creator><creatorcontrib>Pavlidis, N.G. ; Pavlidis, E.G. ; Epitropakis, M.G. ; Plagianakos, V.P. ; Vrahatis, M.N.</creatorcontrib><description>This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424413397</identifier><identifier>ISBN: 9781424413393</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424413400</identifier><identifier>EISBN: 9781424413409</identifier><identifier>DOI: 10.1109/CEC.2007.4424517</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Computational modeling ; Genetic mutations ; Genetic programming ; Pattern analysis ; Robustness ; Signal analysis ; Signal generators ; Signal processing ; Statistical analysis</subject><ispartof>2007 IEEE Congress on Evolutionary Computation, 2007, p.540-547</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4424517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2056,27924,54757,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4424517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Pavlidis, E.G.</creatorcontrib><creatorcontrib>Epitropakis, M.G.</creatorcontrib><creatorcontrib>Plagianakos, V.P.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><title>Computational intelligence algorithms for risk-adjusted trading strategies</title><title>2007 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.</description><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Genetic mutations</subject><subject>Genetic programming</subject><subject>Pattern analysis</subject><subject>Robustness</subject><subject>Signal analysis</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424413397</isbn><isbn>9781424413393</isbn><isbn>1424413400</isbn><isbn>9781424413409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAURNUXNE2zL3TjH7CrK13rsSwm6YNANy10FxTr2lXq2MFSFv37Gho6mxk4MAzD2B3wAoDbh2pZFYJzXSAKLEGfsRuYEoJEzs_ZDCxCzrlQF_9AWn05AW5srrX5vGaLGHd8EpYIGmfstRr2h2NyKQy967LQJ-q60FJfU-a6dhhD-trHrBnGbAzxO3d-d4yJfJZG50PfZnEKidpA8ZZdNa6LtDj5nH2slu_Vc75-e3qpHtd5EKBTblB5RQ2gJmGVqLdYl4K8MtbzaRKIEowlI70BI7WutxKVqp03wpTYaJRzdv_XG4hocxjD3o0_m9Mn8hcUF1D8</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Pavlidis, N.G.</creator><creator>Pavlidis, E.G.</creator><creator>Epitropakis, M.G.</creator><creator>Plagianakos, V.P.</creator><creator>Vrahatis, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20070101</creationdate><title>Computational intelligence algorithms for risk-adjusted trading strategies</title><author>Pavlidis, N.G. ; Pavlidis, E.G. ; Epitropakis, M.G. ; Plagianakos, V.P. ; Vrahatis, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-846d6ef147e2962cb4c52ed689d0174125189e83d818377cb3466cad82854f743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Genetic mutations</topic><topic>Genetic programming</topic><topic>Pattern analysis</topic><topic>Robustness</topic><topic>Signal analysis</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Pavlidis, E.G.</creatorcontrib><creatorcontrib>Epitropakis, M.G.</creatorcontrib><creatorcontrib>Plagianakos, V.P.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pavlidis, N.G.</au><au>Pavlidis, E.G.</au><au>Epitropakis, M.G.</au><au>Plagianakos, V.P.</au><au>Vrahatis, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational intelligence algorithms for risk-adjusted trading strategies</atitle><btitle>2007 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>540</spage><epage>547</epage><pages>540-547</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424413397</isbn><isbn>9781424413393</isbn><eisbn>1424413400</eisbn><eisbn>9781424413409</eisbn><abstract>This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2007.4424517</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2007 IEEE Congress on Evolutionary Computation, 2007, p.540-547
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4424517
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational intelligence
Computational modeling
Genetic mutations
Genetic programming
Pattern analysis
Robustness
Signal analysis
Signal generators
Signal processing
Statistical analysis
title Computational intelligence algorithms for risk-adjusted trading strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20intelligence%20algorithms%20for%20risk-adjusted%20trading%20strategies&rft.btitle=2007%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Pavlidis,%20N.G.&rft.date=2007-01-01&rft.spage=540&rft.epage=547&rft.pages=540-547&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424413397&rft.isbn_list=9781424413393&rft_id=info:doi/10.1109/CEC.2007.4424517&rft_dat=%3Cieee_6IE%3E4424517%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413400&rft.eisbn_list=9781424413409&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4424517&rfr_iscdi=true