Computational intelligence algorithms for risk-adjusted trading strategies
This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is i...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | |
container_start_page | 540 |
container_title | |
container_volume | |
creator | Pavlidis, N.G. Pavlidis, E.G. Epitropakis, M.G. Plagianakos, V.P. Vrahatis, M.N. |
description | This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data. |
doi_str_mv | 10.1109/CEC.2007.4424517 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4424517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4424517</ieee_id><sourcerecordid>4424517</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-846d6ef147e2962cb4c52ed689d0174125189e83d818377cb3466cad82854f743</originalsourceid><addsrcrecordid>eNo9kMtqwzAURNUXNE2zL3TjH7CrK13rsSwm6YNANy10FxTr2lXq2MFSFv37Gho6mxk4MAzD2B3wAoDbh2pZFYJzXSAKLEGfsRuYEoJEzs_ZDCxCzrlQF_9AWn05AW5srrX5vGaLGHd8EpYIGmfstRr2h2NyKQy967LQJ-q60FJfU-a6dhhD-trHrBnGbAzxO3d-d4yJfJZG50PfZnEKidpA8ZZdNa6LtDj5nH2slu_Vc75-e3qpHtd5EKBTblB5RQ2gJmGVqLdYl4K8MtbzaRKIEowlI70BI7WutxKVqp03wpTYaJRzdv_XG4hocxjD3o0_m9Mn8hcUF1D8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational intelligence algorithms for risk-adjusted trading strategies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pavlidis, N.G. ; Pavlidis, E.G. ; Epitropakis, M.G. ; Plagianakos, V.P. ; Vrahatis, M.N.</creator><creatorcontrib>Pavlidis, N.G. ; Pavlidis, E.G. ; Epitropakis, M.G. ; Plagianakos, V.P. ; Vrahatis, M.N.</creatorcontrib><description>This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424413397</identifier><identifier>ISBN: 9781424413393</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424413400</identifier><identifier>EISBN: 9781424413409</identifier><identifier>DOI: 10.1109/CEC.2007.4424517</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Computational modeling ; Genetic mutations ; Genetic programming ; Pattern analysis ; Robustness ; Signal analysis ; Signal generators ; Signal processing ; Statistical analysis</subject><ispartof>2007 IEEE Congress on Evolutionary Computation, 2007, p.540-547</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4424517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2056,27924,54757,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4424517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Pavlidis, E.G.</creatorcontrib><creatorcontrib>Epitropakis, M.G.</creatorcontrib><creatorcontrib>Plagianakos, V.P.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><title>Computational intelligence algorithms for risk-adjusted trading strategies</title><title>2007 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.</description><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Genetic mutations</subject><subject>Genetic programming</subject><subject>Pattern analysis</subject><subject>Robustness</subject><subject>Signal analysis</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424413397</isbn><isbn>9781424413393</isbn><isbn>1424413400</isbn><isbn>9781424413409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAURNUXNE2zL3TjH7CrK13rsSwm6YNANy10FxTr2lXq2MFSFv37Gho6mxk4MAzD2B3wAoDbh2pZFYJzXSAKLEGfsRuYEoJEzs_ZDCxCzrlQF_9AWn05AW5srrX5vGaLGHd8EpYIGmfstRr2h2NyKQy967LQJ-q60FJfU-a6dhhD-trHrBnGbAzxO3d-d4yJfJZG50PfZnEKidpA8ZZdNa6LtDj5nH2slu_Vc75-e3qpHtd5EKBTblB5RQ2gJmGVqLdYl4K8MtbzaRKIEowlI70BI7WutxKVqp03wpTYaJRzdv_XG4hocxjD3o0_m9Mn8hcUF1D8</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Pavlidis, N.G.</creator><creator>Pavlidis, E.G.</creator><creator>Epitropakis, M.G.</creator><creator>Plagianakos, V.P.</creator><creator>Vrahatis, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20070101</creationdate><title>Computational intelligence algorithms for risk-adjusted trading strategies</title><author>Pavlidis, N.G. ; Pavlidis, E.G. ; Epitropakis, M.G. ; Plagianakos, V.P. ; Vrahatis, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-846d6ef147e2962cb4c52ed689d0174125189e83d818377cb3466cad82854f743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Genetic mutations</topic><topic>Genetic programming</topic><topic>Pattern analysis</topic><topic>Robustness</topic><topic>Signal analysis</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Pavlidis, E.G.</creatorcontrib><creatorcontrib>Epitropakis, M.G.</creatorcontrib><creatorcontrib>Plagianakos, V.P.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pavlidis, N.G.</au><au>Pavlidis, E.G.</au><au>Epitropakis, M.G.</au><au>Plagianakos, V.P.</au><au>Vrahatis, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational intelligence algorithms for risk-adjusted trading strategies</atitle><btitle>2007 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>540</spage><epage>547</epage><pages>540-547</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424413397</isbn><isbn>9781424413393</isbn><eisbn>1424413400</eisbn><eisbn>9781424413409</eisbn><abstract>This paper investigates the performance of trading strategies identified through computational intelligence techniques. We focus on trading rules derived by genetic programming, as well as, generalized moving average rules optimized through differential evolution. The performance of these rules is investigated using recently proposed risk-adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but genetic programming seems more promising in terms of generating higher profits and detecting novel patterns in the data.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2007.4424517</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2007 IEEE Congress on Evolutionary Computation, 2007, p.540-547 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_4424517 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational intelligence Computational modeling Genetic mutations Genetic programming Pattern analysis Robustness Signal analysis Signal generators Signal processing Statistical analysis |
title | Computational intelligence algorithms for risk-adjusted trading strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20intelligence%20algorithms%20for%20risk-adjusted%20trading%20strategies&rft.btitle=2007%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Pavlidis,%20N.G.&rft.date=2007-01-01&rft.spage=540&rft.epage=547&rft.pages=540-547&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424413397&rft.isbn_list=9781424413393&rft_id=info:doi/10.1109/CEC.2007.4424517&rft_dat=%3Cieee_6IE%3E4424517%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424413400&rft.eisbn_list=9781424413409&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4424517&rfr_iscdi=true |