Genetic programming-based clustering using an information theoretic fitness measure

A clustering method based on multitree genetic programming and an information theoretic fitness is proposed. A probabilistic interpretation is given to the output of trees that does not require a conflict resolution phase. The method can cluster data with irregular shapes, estimate the underlying mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boric, N., Estevez, P.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A clustering method based on multitree genetic programming and an information theoretic fitness is proposed. A probabilistic interpretation is given to the output of trees that does not require a conflict resolution phase. The method can cluster data with irregular shapes, estimate the underlying models of the data for each class and use those models to classify unseen patterns. The proposed scheme is tested on several real and artificial data sets, outperforming k-means algorithm in all of them.
ISSN:1089-778X
1941-0026
DOI:10.1109/CEC.2007.4424451