Design of GMTI combining networks

Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schulz, F., Saalmann, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue
container_start_page 486
container_title
container_volume
creator Schulz, F.
Saalmann, O.
description Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.
doi_str_mv 10.1109/IGARSS.2007.4422837
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4422837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4422837</ieee_id><sourcerecordid>4422837</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2280626bad2d5d653df692b2a49b2d7fb9a5139977e67713e081a412c595fd363</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhcc_sNY8QTfxARLvvfOXuyxVa6Ai2OzLpDMpozaRpCC-vQHj2ZzFB4fvCLFAyBGB78v18m27zQnA5koRFdKeiRtUpBQSEp-LGaGWmQWQFyJhW_wzpMuJGWZzLZJheIcxkhUDzsTdQxjioU27Jl2_VGW67451bGN7SNtw-u76j-FWXDXucwjJ1HNRPT1Wq-ds87ouV8tNFhlO2egEhkztPHntjZa-MUw1OcU1edvU7DRKZmuDsRZlgALdKLjXrBsvjZyLxd9sDCHsvvp4dP3PbjorfwFgckGK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of GMTI combining networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schulz, F. ; Saalmann, O.</creator><creatorcontrib>Schulz, F. ; Saalmann, O.</creatorcontrib><description>Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781424412112</identifier><identifier>ISBN: 1424412110</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424412129</identifier><identifier>EISBN: 9781424412129</identifier><identifier>DOI: 10.1109/IGARSS.2007.4422837</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne radar ; Apertures ; Doppler radar ; Hardware ; Radar clutter ; Sensor arrays ; Signal processing ; Signal processing algorithms ; Spaceborne radar ; Zinc</subject><ispartof>2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.486-489</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4422837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4422837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schulz, F.</creatorcontrib><creatorcontrib>Saalmann, O.</creatorcontrib><title>Design of GMTI combining networks</title><title>2007 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.</description><subject>Airborne radar</subject><subject>Apertures</subject><subject>Doppler radar</subject><subject>Hardware</subject><subject>Radar clutter</subject><subject>Sensor arrays</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Spaceborne radar</subject><subject>Zinc</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781424412112</isbn><isbn>1424412110</isbn><isbn>1424412129</isbn><isbn>9781424412129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhcc_sNY8QTfxARLvvfOXuyxVa6Ai2OzLpDMpozaRpCC-vQHj2ZzFB4fvCLFAyBGB78v18m27zQnA5koRFdKeiRtUpBQSEp-LGaGWmQWQFyJhW_wzpMuJGWZzLZJheIcxkhUDzsTdQxjioU27Jl2_VGW67451bGN7SNtw-u76j-FWXDXucwjJ1HNRPT1Wq-ds87ouV8tNFhlO2egEhkztPHntjZa-MUw1OcU1edvU7DRKZmuDsRZlgALdKLjXrBsvjZyLxd9sDCHsvvp4dP3PbjorfwFgckGK</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Schulz, F.</creator><creator>Saalmann, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Design of GMTI combining networks</title><author>Schulz, F. ; Saalmann, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2280626bad2d5d653df692b2a49b2d7fb9a5139977e67713e081a412c595fd363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Airborne radar</topic><topic>Apertures</topic><topic>Doppler radar</topic><topic>Hardware</topic><topic>Radar clutter</topic><topic>Sensor arrays</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Spaceborne radar</topic><topic>Zinc</topic><toplevel>online_resources</toplevel><creatorcontrib>Schulz, F.</creatorcontrib><creatorcontrib>Saalmann, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schulz, F.</au><au>Saalmann, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of GMTI combining networks</atitle><btitle>2007 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2007-07</date><risdate>2007</risdate><spage>486</spage><epage>489</epage><pages>486-489</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781424412112</isbn><isbn>1424412110</isbn><eisbn>1424412129</eisbn><eisbn>9781424412129</eisbn><abstract>Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2007.4422837</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.486-489
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_4422837
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Airborne radar
Apertures
Doppler radar
Hardware
Radar clutter
Sensor arrays
Signal processing
Signal processing algorithms
Spaceborne radar
Zinc
title Design of GMTI combining networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20GMTI%20combining%20networks&rft.btitle=2007%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Schulz,%20F.&rft.date=2007-07&rft.spage=486&rft.epage=489&rft.pages=486-489&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781424412112&rft.isbn_list=1424412110&rft_id=info:doi/10.1109/IGARSS.2007.4422837&rft_dat=%3Cieee_6IE%3E4422837%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424412129&rft.eisbn_list=9781424412129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4422837&rfr_iscdi=true