Design of GMTI combining networks
Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifica...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | |
container_start_page | 486 |
container_title | |
container_volume | |
creator | Schulz, F. Saalmann, O. |
description | Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated. |
doi_str_mv | 10.1109/IGARSS.2007.4422837 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4422837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4422837</ieee_id><sourcerecordid>4422837</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2280626bad2d5d653df692b2a49b2d7fb9a5139977e67713e081a412c595fd363</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhcc_sNY8QTfxARLvvfOXuyxVa6Ai2OzLpDMpozaRpCC-vQHj2ZzFB4fvCLFAyBGB78v18m27zQnA5koRFdKeiRtUpBQSEp-LGaGWmQWQFyJhW_wzpMuJGWZzLZJheIcxkhUDzsTdQxjioU27Jl2_VGW67451bGN7SNtw-u76j-FWXDXucwjJ1HNRPT1Wq-ds87ouV8tNFhlO2egEhkztPHntjZa-MUw1OcU1edvU7DRKZmuDsRZlgALdKLjXrBsvjZyLxd9sDCHsvvp4dP3PbjorfwFgckGK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of GMTI combining networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schulz, F. ; Saalmann, O.</creator><creatorcontrib>Schulz, F. ; Saalmann, O.</creatorcontrib><description>Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781424412112</identifier><identifier>ISBN: 1424412110</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424412129</identifier><identifier>EISBN: 9781424412129</identifier><identifier>DOI: 10.1109/IGARSS.2007.4422837</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne radar ; Apertures ; Doppler radar ; Hardware ; Radar clutter ; Sensor arrays ; Signal processing ; Signal processing algorithms ; Spaceborne radar ; Zinc</subject><ispartof>2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.486-489</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4422837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4422837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schulz, F.</creatorcontrib><creatorcontrib>Saalmann, O.</creatorcontrib><title>Design of GMTI combining networks</title><title>2007 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.</description><subject>Airborne radar</subject><subject>Apertures</subject><subject>Doppler radar</subject><subject>Hardware</subject><subject>Radar clutter</subject><subject>Sensor arrays</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Spaceborne radar</subject><subject>Zinc</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781424412112</isbn><isbn>1424412110</isbn><isbn>1424412129</isbn><isbn>9781424412129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhcc_sNY8QTfxARLvvfOXuyxVa6Ai2OzLpDMpozaRpCC-vQHj2ZzFB4fvCLFAyBGB78v18m27zQnA5koRFdKeiRtUpBQSEp-LGaGWmQWQFyJhW_wzpMuJGWZzLZJheIcxkhUDzsTdQxjioU27Jl2_VGW67451bGN7SNtw-u76j-FWXDXucwjJ1HNRPT1Wq-ds87ouV8tNFhlO2egEhkztPHntjZa-MUw1OcU1edvU7DRKZmuDsRZlgALdKLjXrBsvjZyLxd9sDCHsvvp4dP3PbjorfwFgckGK</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Schulz, F.</creator><creator>Saalmann, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Design of GMTI combining networks</title><author>Schulz, F. ; Saalmann, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2280626bad2d5d653df692b2a49b2d7fb9a5139977e67713e081a412c595fd363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Airborne radar</topic><topic>Apertures</topic><topic>Doppler radar</topic><topic>Hardware</topic><topic>Radar clutter</topic><topic>Sensor arrays</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Spaceborne radar</topic><topic>Zinc</topic><toplevel>online_resources</toplevel><creatorcontrib>Schulz, F.</creatorcontrib><creatorcontrib>Saalmann, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schulz, F.</au><au>Saalmann, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of GMTI combining networks</atitle><btitle>2007 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2007-07</date><risdate>2007</risdate><spage>486</spage><epage>489</epage><pages>486-489</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781424412112</isbn><isbn>1424412110</isbn><eisbn>1424412129</eisbn><eisbn>9781424412129</eisbn><abstract>Multichannel radar systems are of choice for ground moving target indication (GMTI) since they allow for a joint space-time processing of the received data that enables an efficient suppression of ground clutter returns. The design of the receiving sensor group is driven by the performance specifications of the intended GMTI modus, which usually requires the sensor array to consist of a few hundred up to a few thousand elements. Though desirable, a full digital processing of all receiving channels is practically not feasible due to both hardware constraints and computational load. The formation of sub-arrays using a proper combining network before A/D conversion reduces the number of processing channels while maintaining the advantages of the full array. In this paper the impact of the combining network design on the GMTI performance of a simulated airborne multichannel radar system is investigated.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2007.4422837</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.486-489 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_4422837 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Airborne radar Apertures Doppler radar Hardware Radar clutter Sensor arrays Signal processing Signal processing algorithms Spaceborne radar Zinc |
title | Design of GMTI combining networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20GMTI%20combining%20networks&rft.btitle=2007%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Schulz,%20F.&rft.date=2007-07&rft.spage=486&rft.epage=489&rft.pages=486-489&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781424412112&rft.isbn_list=1424412110&rft_id=info:doi/10.1109/IGARSS.2007.4422837&rft_dat=%3Cieee_6IE%3E4422837%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424412129&rft.eisbn_list=9781424412129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4422837&rfr_iscdi=true |