Target recognition in SAR images with Support Vector Machines (SVM)
This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very ro...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | |
container_start_page | 456 |
container_title | |
container_volume | |
creator | Tison, C. Pourthie, N. Souyris, J.-C. |
description | This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration. |
doi_str_mv | 10.1109/IGARSS.2007.4422829 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4422829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4422829</ieee_id><sourcerecordid>4422829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-8739beb6025cf1b05dca4bcaa44231afcfceb1c534990fb59752c32d500caba73</originalsourceid><addsrcrecordid>eNo1kE1Pg0AYhNevxFr5Bb3sUQ_g--4HsEdCam3SxqTUXpvd7ULXKBDAGP-9JOJc5vAkk5khZIEQIYJ6Wq-yXVFEDCCJhGAsZeqC3KFgQiBDpi7JjKHkYQLAr0igkvSfIbueWKxUfEuCvn-HUVwJBTgj-V53lRto52xT1X7wTU19TYtsR_2nrlxPv_1wpsVX2zbdQA_ODk1Ht9qefT3Ch-KwfbwnN6X-6F0w-Zy8PS_3-Uu4eV2t82wTWhQwhGnClXEmBiZtiQbkyWphrNbjIo66tKV1Bq3kQikojVSJZJazkwSw2uiEz8niL9c7545tNxbsfo7TH_wXLItPOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Target recognition in SAR images with Support Vector Machines (SVM)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tison, C. ; Pourthie, N. ; Souyris, J.-C.</creator><creatorcontrib>Tison, C. ; Pourthie, N. ; Souyris, J.-C.</creatorcontrib><description>This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781424412112</identifier><identifier>ISBN: 1424412110</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424412129</identifier><identifier>EISBN: 9781424412129</identifier><identifier>DOI: 10.1109/IGARSS.2007.4422829</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Discrete cosine transforms ; Image resolution ; Joining processes ; Kernel ; Object recognition ; Robustness ; Support vector machine classification ; Support vector machines ; Target recognition</subject><ispartof>2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.456-459</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-8739beb6025cf1b05dca4bcaa44231afcfceb1c534990fb59752c32d500caba73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4422829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4422829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tison, C.</creatorcontrib><creatorcontrib>Pourthie, N.</creatorcontrib><creatorcontrib>Souyris, J.-C.</creatorcontrib><title>Target recognition in SAR images with Support Vector Machines (SVM)</title><title>2007 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.</description><subject>Constraint optimization</subject><subject>Discrete cosine transforms</subject><subject>Image resolution</subject><subject>Joining processes</subject><subject>Kernel</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Target recognition</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781424412112</isbn><isbn>1424412110</isbn><isbn>1424412129</isbn><isbn>9781424412129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1Pg0AYhNevxFr5Bb3sUQ_g--4HsEdCam3SxqTUXpvd7ULXKBDAGP-9JOJc5vAkk5khZIEQIYJ6Wq-yXVFEDCCJhGAsZeqC3KFgQiBDpi7JjKHkYQLAr0igkvSfIbueWKxUfEuCvn-HUVwJBTgj-V53lRto52xT1X7wTU19TYtsR_2nrlxPv_1wpsVX2zbdQA_ODk1Ht9qefT3Ch-KwfbwnN6X-6F0w-Zy8PS_3-Uu4eV2t82wTWhQwhGnClXEmBiZtiQbkyWphrNbjIo66tKV1Bq3kQikojVSJZJazkwSw2uiEz8niL9c7545tNxbsfo7TH_wXLItPOQ</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Tison, C.</creator><creator>Pourthie, N.</creator><creator>Souyris, J.-C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Target recognition in SAR images with Support Vector Machines (SVM)</title><author>Tison, C. ; Pourthie, N. ; Souyris, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-8739beb6025cf1b05dca4bcaa44231afcfceb1c534990fb59752c32d500caba73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Constraint optimization</topic><topic>Discrete cosine transforms</topic><topic>Image resolution</topic><topic>Joining processes</topic><topic>Kernel</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Tison, C.</creatorcontrib><creatorcontrib>Pourthie, N.</creatorcontrib><creatorcontrib>Souyris, J.-C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tison, C.</au><au>Pourthie, N.</au><au>Souyris, J.-C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Target recognition in SAR images with Support Vector Machines (SVM)</atitle><btitle>2007 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2007-07</date><risdate>2007</risdate><spage>456</spage><epage>459</epage><pages>456-459</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781424412112</isbn><isbn>1424412110</isbn><eisbn>1424412129</eisbn><eisbn>9781424412129</eisbn><abstract>This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2007.4422829</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.456-459 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_4422829 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Constraint optimization Discrete cosine transforms Image resolution Joining processes Kernel Object recognition Robustness Support vector machine classification Support vector machines Target recognition |
title | Target recognition in SAR images with Support Vector Machines (SVM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Target%20recognition%20in%20SAR%20images%20with%20Support%20Vector%20Machines%20(SVM)&rft.btitle=2007%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Tison,%20C.&rft.date=2007-07&rft.spage=456&rft.epage=459&rft.pages=456-459&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781424412112&rft.isbn_list=1424412110&rft_id=info:doi/10.1109/IGARSS.2007.4422829&rft_dat=%3Cieee_6IE%3E4422829%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424412129&rft.eisbn_list=9781424412129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4422829&rfr_iscdi=true |