Target recognition in SAR images with Support Vector Machines (SVM)

This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tison, C., Pourthie, N., Souyris, J.-C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue
container_start_page 456
container_title
container_volume
creator Tison, C.
Pourthie, N.
Souyris, J.-C.
description This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.
doi_str_mv 10.1109/IGARSS.2007.4422829
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4422829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4422829</ieee_id><sourcerecordid>4422829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-8739beb6025cf1b05dca4bcaa44231afcfceb1c534990fb59752c32d500caba73</originalsourceid><addsrcrecordid>eNo1kE1Pg0AYhNevxFr5Bb3sUQ_g--4HsEdCam3SxqTUXpvd7ULXKBDAGP-9JOJc5vAkk5khZIEQIYJ6Wq-yXVFEDCCJhGAsZeqC3KFgQiBDpi7JjKHkYQLAr0igkvSfIbueWKxUfEuCvn-HUVwJBTgj-V53lRto52xT1X7wTU19TYtsR_2nrlxPv_1wpsVX2zbdQA_ODk1Ht9qefT3Ch-KwfbwnN6X-6F0w-Zy8PS_3-Uu4eV2t82wTWhQwhGnClXEmBiZtiQbkyWphrNbjIo66tKV1Bq3kQikojVSJZJazkwSw2uiEz8niL9c7545tNxbsfo7TH_wXLItPOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Target recognition in SAR images with Support Vector Machines (SVM)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tison, C. ; Pourthie, N. ; Souyris, J.-C.</creator><creatorcontrib>Tison, C. ; Pourthie, N. ; Souyris, J.-C.</creatorcontrib><description>This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781424412112</identifier><identifier>ISBN: 1424412110</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424412129</identifier><identifier>EISBN: 9781424412129</identifier><identifier>DOI: 10.1109/IGARSS.2007.4422829</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Discrete cosine transforms ; Image resolution ; Joining processes ; Kernel ; Object recognition ; Robustness ; Support vector machine classification ; Support vector machines ; Target recognition</subject><ispartof>2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.456-459</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-8739beb6025cf1b05dca4bcaa44231afcfceb1c534990fb59752c32d500caba73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4422829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4422829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tison, C.</creatorcontrib><creatorcontrib>Pourthie, N.</creatorcontrib><creatorcontrib>Souyris, J.-C.</creatorcontrib><title>Target recognition in SAR images with Support Vector Machines (SVM)</title><title>2007 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.</description><subject>Constraint optimization</subject><subject>Discrete cosine transforms</subject><subject>Image resolution</subject><subject>Joining processes</subject><subject>Kernel</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Target recognition</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781424412112</isbn><isbn>1424412110</isbn><isbn>1424412129</isbn><isbn>9781424412129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1Pg0AYhNevxFr5Bb3sUQ_g--4HsEdCam3SxqTUXpvd7ULXKBDAGP-9JOJc5vAkk5khZIEQIYJ6Wq-yXVFEDCCJhGAsZeqC3KFgQiBDpi7JjKHkYQLAr0igkvSfIbueWKxUfEuCvn-HUVwJBTgj-V53lRto52xT1X7wTU19TYtsR_2nrlxPv_1wpsVX2zbdQA_ODk1Ht9qefT3Ch-KwfbwnN6X-6F0w-Zy8PS_3-Uu4eV2t82wTWhQwhGnClXEmBiZtiQbkyWphrNbjIo66tKV1Bq3kQikojVSJZJazkwSw2uiEz8niL9c7545tNxbsfo7TH_wXLItPOQ</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Tison, C.</creator><creator>Pourthie, N.</creator><creator>Souyris, J.-C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Target recognition in SAR images with Support Vector Machines (SVM)</title><author>Tison, C. ; Pourthie, N. ; Souyris, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-8739beb6025cf1b05dca4bcaa44231afcfceb1c534990fb59752c32d500caba73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Constraint optimization</topic><topic>Discrete cosine transforms</topic><topic>Image resolution</topic><topic>Joining processes</topic><topic>Kernel</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Tison, C.</creatorcontrib><creatorcontrib>Pourthie, N.</creatorcontrib><creatorcontrib>Souyris, J.-C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tison, C.</au><au>Pourthie, N.</au><au>Souyris, J.-C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Target recognition in SAR images with Support Vector Machines (SVM)</atitle><btitle>2007 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2007-07</date><risdate>2007</risdate><spage>456</spage><epage>459</epage><pages>456-459</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781424412112</isbn><isbn>1424412110</isbn><eisbn>1424412129</eisbn><eisbn>9781424412129</eisbn><abstract>This paper addresses object recognition problem in SAR images with SVM classifier; the work has been mainly focused on feature vector definition. Actually, each object is represented by a feature vector and SVM aims to estimate the best hyperplanes that separate classes in the feature space. Very robust definition of feature vector is proposed and tested on real data (MSTAR database). Confusion matrices prove that a very good recognition rate is reached, even for mixed incidence angles configuration.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2007.4422829</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, p.456-459
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_4422829
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Constraint optimization
Discrete cosine transforms
Image resolution
Joining processes
Kernel
Object recognition
Robustness
Support vector machine classification
Support vector machines
Target recognition
title Target recognition in SAR images with Support Vector Machines (SVM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Target%20recognition%20in%20SAR%20images%20with%20Support%20Vector%20Machines%20(SVM)&rft.btitle=2007%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Tison,%20C.&rft.date=2007-07&rft.spage=456&rft.epage=459&rft.pages=456-459&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781424412112&rft.isbn_list=1424412110&rft_id=info:doi/10.1109/IGARSS.2007.4422829&rft_dat=%3Cieee_6IE%3E4422829%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424412129&rft.eisbn_list=9781424412129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4422829&rfr_iscdi=true