Simulation metamodels for modeling output distribution parameters

Metamodels are functions with calibrated parameters, used as abstractions and simplifications of the simulation model. A metamodel exposes the system's input-output relationship and can be used as an analysis tool for solving optimization problems or as a surrogate for building blocks in larger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santos, I.R., Santos, P.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 918
container_issue
container_start_page 910
container_title
container_volume
creator Santos, I.R.
Santos, P.R.
description Metamodels are functions with calibrated parameters, used as abstractions and simplifications of the simulation model. A metamodel exposes the system's input-output relationship and can be used as an analysis tool for solving optimization problems or as a surrogate for building blocks in larger scale simulations. Our approach is to analyze statistically the response by modeling the normal distribution mean and variance functions, in order to better depict the problem and improve the knowledge about the system. The metamodel is checked using the confidence intervals of the estimated distribution parameters, and new design points are employed for predictive validation. An example is used to illustrate the development of analysis and surrogate metamodels.
doi_str_mv 10.1109/WSC.2007.4419687
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4419687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4419687</ieee_id><sourcerecordid>4419687</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1327-d5f23c543f9716bcdbb0b623e08b35c1b6dcfd27e27a6134e65efd65d2ab21063</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2XRCjdkVjyBxLe198Zq4ovqRJDQYyVHdvIKGkiOxn491SlC9Pd6R7dcITcIdSI0Dx8btc1BVA159hIrc7IslEaOT1kBlKckwKF0BVnIC7-dUJfkgJ0g5VSTF6Tm5y_AVALpAVZbWM_d2aKw77s_WT6wfkul2FI5dHG_Vc5zNM4T6WLeUrRzkd2NMkceJ_yLbkKpst-edIF-Xh6fF-_VJu359f1alNFZFRVTgTKWsFZaBRK2zprwUrKPGjLRItWujY4qjxVRiLjXgofnBSOGksRJFuQ-7_d6L3fjSn2Jv3sTm-wX_eKT7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulation metamodels for modeling output distribution parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, I.R. ; Santos, P.R.</creator><creatorcontrib>Santos, I.R. ; Santos, P.R.</creatorcontrib><description>Metamodels are functions with calibrated parameters, used as abstractions and simplifications of the simulation model. A metamodel exposes the system's input-output relationship and can be used as an analysis tool for solving optimization problems or as a surrogate for building blocks in larger scale simulations. Our approach is to analyze statistically the response by modeling the normal distribution mean and variance functions, in order to better depict the problem and improve the knowledge about the system. The metamodel is checked using the confidence intervals of the estimated distribution parameters, and new design points are employed for predictive validation. An example is used to illustrate the development of analysis and surrogate metamodels.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424413058</identifier><identifier>ISBN: 1424413052</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9781424413065</identifier><identifier>EISBN: 1424413060</identifier><identifier>DOI: 10.1109/WSC.2007.4419687</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Analytical models ; Computational modeling ; Design for experiments ; Gaussian distribution ; Informatics ; Mathematical model ; Mathematics ; Parameter estimation ; Uncertainty</subject><ispartof>2007 Winter Simulation Conference, 2007, p.910-918</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4419687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4419687$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, I.R.</creatorcontrib><creatorcontrib>Santos, P.R.</creatorcontrib><title>Simulation metamodels for modeling output distribution parameters</title><title>2007 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>Metamodels are functions with calibrated parameters, used as abstractions and simplifications of the simulation model. A metamodel exposes the system's input-output relationship and can be used as an analysis tool for solving optimization problems or as a surrogate for building blocks in larger scale simulations. Our approach is to analyze statistically the response by modeling the normal distribution mean and variance functions, in order to better depict the problem and improve the knowledge about the system. The metamodel is checked using the confidence intervals of the estimated distribution parameters, and new design points are employed for predictive validation. An example is used to illustrate the development of analysis and surrogate metamodels.</description><subject>Analysis of variance</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Design for experiments</subject><subject>Gaussian distribution</subject><subject>Informatics</subject><subject>Mathematical model</subject><subject>Mathematics</subject><subject>Parameter estimation</subject><subject>Uncertainty</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424413058</isbn><isbn>1424413052</isbn><isbn>9781424413065</isbn><isbn>1424413060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkD1PwzAYhM2XRCjdkVjyBxLe198Zq4ovqRJDQYyVHdvIKGkiOxn491SlC9Pd6R7dcITcIdSI0Dx8btc1BVA159hIrc7IslEaOT1kBlKckwKF0BVnIC7-dUJfkgJ0g5VSTF6Tm5y_AVALpAVZbWM_d2aKw77s_WT6wfkul2FI5dHG_Vc5zNM4T6WLeUrRzkd2NMkceJ_yLbkKpst-edIF-Xh6fF-_VJu359f1alNFZFRVTgTKWsFZaBRK2zprwUrKPGjLRItWujY4qjxVRiLjXgofnBSOGksRJFuQ-7_d6L3fjSn2Jv3sTm-wX_eKT7g</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Santos, I.R.</creator><creator>Santos, P.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200712</creationdate><title>Simulation metamodels for modeling output distribution parameters</title><author>Santos, I.R. ; Santos, P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1327-d5f23c543f9716bcdbb0b623e08b35c1b6dcfd27e27a6134e65efd65d2ab21063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analysis of variance</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Design for experiments</topic><topic>Gaussian distribution</topic><topic>Informatics</topic><topic>Mathematical model</topic><topic>Mathematics</topic><topic>Parameter estimation</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, I.R.</creatorcontrib><creatorcontrib>Santos, P.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, I.R.</au><au>Santos, P.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulation metamodels for modeling output distribution parameters</atitle><btitle>2007 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2007-12</date><risdate>2007</risdate><spage>910</spage><epage>918</epage><pages>910-918</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424413058</isbn><isbn>1424413052</isbn><eisbn>9781424413065</eisbn><eisbn>1424413060</eisbn><abstract>Metamodels are functions with calibrated parameters, used as abstractions and simplifications of the simulation model. A metamodel exposes the system's input-output relationship and can be used as an analysis tool for solving optimization problems or as a surrogate for building blocks in larger scale simulations. Our approach is to analyze statistically the response by modeling the normal distribution mean and variance functions, in order to better depict the problem and improve the knowledge about the system. The metamodel is checked using the confidence intervals of the estimated distribution parameters, and new design points are employed for predictive validation. An example is used to illustrate the development of analysis and surrogate metamodels.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2007.4419687</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof 2007 Winter Simulation Conference, 2007, p.910-918
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_4419687
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analysis of variance
Analytical models
Computational modeling
Design for experiments
Gaussian distribution
Informatics
Mathematical model
Mathematics
Parameter estimation
Uncertainty
title Simulation metamodels for modeling output distribution parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulation%20metamodels%20for%20modeling%20output%20distribution%20parameters&rft.btitle=2007%20Winter%20Simulation%20Conference&rft.au=Santos,%20I.R.&rft.date=2007-12&rft.spage=910&rft.epage=918&rft.pages=910-918&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424413058&rft.isbn_list=1424413052&rft_id=info:doi/10.1109/WSC.2007.4419687&rft_dat=%3Cieee_6IE%3E4419687%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424413065&rft.eisbn_list=1424413060&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4419687&rfr_iscdi=true