Solving capacitated p-median problem using genetic algorithm

Capacitated p-median problem (CPMP) is an important variation of facility location problem in which p capacitated medians are economically selected to serve a set of demand vertices so that the total assigned demand to each of the candidate medians must not exceed its capacity. This paper presents a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ghoseiri, K., Ghannadpour, S.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue
container_start_page 885
container_title
container_volume
creator Ghoseiri, K.
Ghannadpour, S.F.
description Capacitated p-median problem (CPMP) is an important variation of facility location problem in which p capacitated medians are economically selected to serve a set of demand vertices so that the total assigned demand to each of the candidate medians must not exceed its capacity. This paper presents a genetic algorithm to solve the CPMP. Two different assignment techniques namely, classical assignment method and assignment through urgencies are used to assign the demand points to the p selected medians. The behavior and efficiency of the assignment scenarios are examined and compared on CPMP. According to the results, the classical scenario shows superiority in time consuming, whereas the assignment through urgencies scenario is absolutely superior in quality of the obtained solutions over the classical one. In order to check for quality and validity of the suggestive method, we compare the final solution produced over the 10 test problems of Osman and Christofides. Comparison of the results indicates good quality and solutions.
doi_str_mv 10.1109/IEEM.2007.4419318
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4419318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4419318</ieee_id><sourcerecordid>4419318</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-361cebbdae0dc4ce500f24aa314a79b5f7b303675cf482abaff585ac89fabdb23</originalsourceid><addsrcrecordid>eNo9kNtKxDAYhOMJXNc-gHjTF2jNn0OTgDeyVF1Y8UIF75Y_aVIjPdFWwbfXxdWrYfiGGRhCLoDmANRcrcvyIWeUqlwIMBz0AUmM0iDYj5fM6EOyYCBVxgv2ekTO_oAWx_8A4JQk0_ROKQVVCBB6Qa6f-uYzdnXqcEAXZ5x9lQ5Z66uIXTqMvW18m35Mu0jtOz9Hl2JT92Oc39pzchKwmXyy1yV5uS2fV_fZ5vFuvbrZZBGUnHfLzltboaeVE85LSgMTiBwEKmNlUJZTXijpgtAMLYYgtUSnTUBbWcaX5PK3N3rvt8MYWxy_tvsj-DclyE5O</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solving capacitated p-median problem using genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ghoseiri, K. ; Ghannadpour, S.F.</creator><creatorcontrib>Ghoseiri, K. ; Ghannadpour, S.F.</creatorcontrib><description>Capacitated p-median problem (CPMP) is an important variation of facility location problem in which p capacitated medians are economically selected to serve a set of demand vertices so that the total assigned demand to each of the candidate medians must not exceed its capacity. This paper presents a genetic algorithm to solve the CPMP. Two different assignment techniques namely, classical assignment method and assignment through urgencies are used to assign the demand points to the p selected medians. The behavior and efficiency of the assignment scenarios are examined and compared on CPMP. According to the results, the classical scenario shows superiority in time consuming, whereas the assignment through urgencies scenario is absolutely superior in quality of the obtained solutions over the classical one. In order to check for quality and validity of the suggestive method, we compare the final solution produced over the 10 test problems of Osman and Christofides. Comparison of the results indicates good quality and solutions.</description><identifier>ISSN: 2157-3611</identifier><identifier>ISBN: 1424415284</identifier><identifier>ISBN: 9781424415281</identifier><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781424415298</identifier><identifier>EISBN: 1424415292</identifier><identifier>DOI: 10.1109/IEEM.2007.4419318</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bibliographies ; capacitated p-median problem ; Costs ; Emergency services ; facility location ; genetic algorithm ; Genetic algorithms ; Lagrangian functions ; Railway engineering ; Simulated annealing ; Testing ; Transportation ; Vehicle dynamics</subject><ispartof>2007 IEEE International Conference on Industrial Engineering and Engineering Management, 2007, p.885-889</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4419318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4419318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghoseiri, K.</creatorcontrib><creatorcontrib>Ghannadpour, S.F.</creatorcontrib><title>Solving capacitated p-median problem using genetic algorithm</title><title>2007 IEEE International Conference on Industrial Engineering and Engineering Management</title><addtitle>IEEM</addtitle><description>Capacitated p-median problem (CPMP) is an important variation of facility location problem in which p capacitated medians are economically selected to serve a set of demand vertices so that the total assigned demand to each of the candidate medians must not exceed its capacity. This paper presents a genetic algorithm to solve the CPMP. Two different assignment techniques namely, classical assignment method and assignment through urgencies are used to assign the demand points to the p selected medians. The behavior and efficiency of the assignment scenarios are examined and compared on CPMP. According to the results, the classical scenario shows superiority in time consuming, whereas the assignment through urgencies scenario is absolutely superior in quality of the obtained solutions over the classical one. In order to check for quality and validity of the suggestive method, we compare the final solution produced over the 10 test problems of Osman and Christofides. Comparison of the results indicates good quality and solutions.</description><subject>Bibliographies</subject><subject>capacitated p-median problem</subject><subject>Costs</subject><subject>Emergency services</subject><subject>facility location</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Lagrangian functions</subject><subject>Railway engineering</subject><subject>Simulated annealing</subject><subject>Testing</subject><subject>Transportation</subject><subject>Vehicle dynamics</subject><issn>2157-3611</issn><issn>2157-362X</issn><isbn>1424415284</isbn><isbn>9781424415281</isbn><isbn>9781424415298</isbn><isbn>1424415292</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKxDAYhOMJXNc-gHjTF2jNn0OTgDeyVF1Y8UIF75Y_aVIjPdFWwbfXxdWrYfiGGRhCLoDmANRcrcvyIWeUqlwIMBz0AUmM0iDYj5fM6EOyYCBVxgv2ekTO_oAWx_8A4JQk0_ROKQVVCBB6Qa6f-uYzdnXqcEAXZ5x9lQ5Z66uIXTqMvW18m35Mu0jtOz9Hl2JT92Oc39pzchKwmXyy1yV5uS2fV_fZ5vFuvbrZZBGUnHfLzltboaeVE85LSgMTiBwEKmNlUJZTXijpgtAMLYYgtUSnTUBbWcaX5PK3N3rvt8MYWxy_tvsj-DclyE5O</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Ghoseiri, K.</creator><creator>Ghannadpour, S.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Solving capacitated p-median problem using genetic algorithm</title><author>Ghoseiri, K. ; Ghannadpour, S.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-361cebbdae0dc4ce500f24aa314a79b5f7b303675cf482abaff585ac89fabdb23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bibliographies</topic><topic>capacitated p-median problem</topic><topic>Costs</topic><topic>Emergency services</topic><topic>facility location</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Lagrangian functions</topic><topic>Railway engineering</topic><topic>Simulated annealing</topic><topic>Testing</topic><topic>Transportation</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghoseiri, K.</creatorcontrib><creatorcontrib>Ghannadpour, S.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghoseiri, K.</au><au>Ghannadpour, S.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving capacitated p-median problem using genetic algorithm</atitle><btitle>2007 IEEE International Conference on Industrial Engineering and Engineering Management</btitle><stitle>IEEM</stitle><date>2007-12</date><risdate>2007</risdate><spage>885</spage><epage>889</epage><pages>885-889</pages><issn>2157-3611</issn><eissn>2157-362X</eissn><isbn>1424415284</isbn><isbn>9781424415281</isbn><eisbn>9781424415298</eisbn><eisbn>1424415292</eisbn><abstract>Capacitated p-median problem (CPMP) is an important variation of facility location problem in which p capacitated medians are economically selected to serve a set of demand vertices so that the total assigned demand to each of the candidate medians must not exceed its capacity. This paper presents a genetic algorithm to solve the CPMP. Two different assignment techniques namely, classical assignment method and assignment through urgencies are used to assign the demand points to the p selected medians. The behavior and efficiency of the assignment scenarios are examined and compared on CPMP. According to the results, the classical scenario shows superiority in time consuming, whereas the assignment through urgencies scenario is absolutely superior in quality of the obtained solutions over the classical one. In order to check for quality and validity of the suggestive method, we compare the final solution produced over the 10 test problems of Osman and Christofides. Comparison of the results indicates good quality and solutions.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2007.4419318</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-3611
ispartof 2007 IEEE International Conference on Industrial Engineering and Engineering Management, 2007, p.885-889
issn 2157-3611
2157-362X
language eng
recordid cdi_ieee_primary_4419318
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bibliographies
capacitated p-median problem
Costs
Emergency services
facility location
genetic algorithm
Genetic algorithms
Lagrangian functions
Railway engineering
Simulated annealing
Testing
Transportation
Vehicle dynamics
title Solving capacitated p-median problem using genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20capacitated%20p-median%20problem%20using%20genetic%20algorithm&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management&rft.au=Ghoseiri,%20K.&rft.date=2007-12&rft.spage=885&rft.epage=889&rft.pages=885-889&rft.issn=2157-3611&rft.eissn=2157-362X&rft.isbn=1424415284&rft.isbn_list=9781424415281&rft_id=info:doi/10.1109/IEEM.2007.4419318&rft_dat=%3Cieee_6IE%3E4419318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424415298&rft.eisbn_list=1424415292&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4419318&rfr_iscdi=true