A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting

In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the win...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gong, Jianwei, Qi, Jianyong, Xiong, Guangming, Chen, Huiyan, Huang, Wanning
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 137
container_title
container_volume
creator Gong, Jianwei
Qi, Jianyong
Xiong, Guangming
Chen, Huiyan
Huang, Wanning
description In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.
doi_str_mv 10.1109/CIS.2007.195
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4415318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4415318</ieee_id><sourcerecordid>4415318</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-f739a200f85ef8af1207cfe0f523ec2e2c6f58780d21e36913a68bde76f566ba3</originalsourceid><addsrcrecordid>eNpdjktLw0AcxFdEUNrcvHnZL5C4j-7rGIO2hVrBx7lskv_WlSRbko3gt--CnpzLMD-GYRC6paSglJj7avtWMEJUQY24QJlRmihpBCeKqct_-Rpl0_RFkrjhhsgbtC_xusQPdoIWV6Gv_WBjGL3tcDk30YcBl90xgfjZYxdG_Dx30eevoQ4x9cMJRhv9N-DNPEQ_HJfoytluguzPF-jj6fG92uS7l_W2Kne5p0TE3ClubDrttACnraOMqMYBcYJxaBiwRjqh0_OWUeDSUG6lrltQCUtZW75Ad7-7HgAOp9H3dvw5rFZUcKr5GZk4To0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gong, Jianwei ; Qi, Jianyong ; Xiong, Guangming ; Chen, Huiyan ; Huang, Wanning</creator><creatorcontrib>Gong, Jianwei ; Qi, Jianyong ; Xiong, Guangming ; Chen, Huiyan ; Huang, Wanning</creatorcontrib><description>In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.</description><identifier>ISBN: 9780769530727</identifier><identifier>ISBN: 0769530729</identifier><identifier>EISBN: 9780769530727</identifier><identifier>EISBN: 0769530729</identifier><identifier>DOI: 10.1109/CIS.2007.195</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Costs ; Feedback control ; Genetic algorithms ; Hybrid intelligent systems ; Intelligent robots ; Intelligent vehicles ; Multirobot systems ; Security ; Vehicle dynamics</subject><ispartof>2007 International Conference on Computational Intelligence and Security (CIS 2007), 2007, p.137-141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4415318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4415318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Jianwei</creatorcontrib><creatorcontrib>Qi, Jianyong</creatorcontrib><creatorcontrib>Xiong, Guangming</creatorcontrib><creatorcontrib>Chen, Huiyan</creatorcontrib><creatorcontrib>Huang, Wanning</creatorcontrib><title>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</title><title>2007 International Conference on Computational Intelligence and Security (CIS 2007)</title><addtitle>ICCIAS</addtitle><description>In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.</description><subject>Computational intelligence</subject><subject>Costs</subject><subject>Feedback control</subject><subject>Genetic algorithms</subject><subject>Hybrid intelligent systems</subject><subject>Intelligent robots</subject><subject>Intelligent vehicles</subject><subject>Multirobot systems</subject><subject>Security</subject><subject>Vehicle dynamics</subject><isbn>9780769530727</isbn><isbn>0769530729</isbn><isbn>9780769530727</isbn><isbn>0769530729</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpdjktLw0AcxFdEUNrcvHnZL5C4j-7rGIO2hVrBx7lskv_WlSRbko3gt--CnpzLMD-GYRC6paSglJj7avtWMEJUQY24QJlRmihpBCeKqct_-Rpl0_RFkrjhhsgbtC_xusQPdoIWV6Gv_WBjGL3tcDk30YcBl90xgfjZYxdG_Dx30eevoQ4x9cMJRhv9N-DNPEQ_HJfoytluguzPF-jj6fG92uS7l_W2Kne5p0TE3ClubDrttACnraOMqMYBcYJxaBiwRjqh0_OWUeDSUG6lrltQCUtZW75Ad7-7HgAOp9H3dvw5rFZUcKr5GZk4To0</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Gong, Jianwei</creator><creator>Qi, Jianyong</creator><creator>Xiong, Guangming</creator><creator>Chen, Huiyan</creator><creator>Huang, Wanning</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</title><author>Gong, Jianwei ; Qi, Jianyong ; Xiong, Guangming ; Chen, Huiyan ; Huang, Wanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-f739a200f85ef8af1207cfe0f523ec2e2c6f58780d21e36913a68bde76f566ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational intelligence</topic><topic>Costs</topic><topic>Feedback control</topic><topic>Genetic algorithms</topic><topic>Hybrid intelligent systems</topic><topic>Intelligent robots</topic><topic>Intelligent vehicles</topic><topic>Multirobot systems</topic><topic>Security</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Gong, Jianwei</creatorcontrib><creatorcontrib>Qi, Jianyong</creatorcontrib><creatorcontrib>Xiong, Guangming</creatorcontrib><creatorcontrib>Chen, Huiyan</creatorcontrib><creatorcontrib>Huang, Wanning</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Jianwei</au><au>Qi, Jianyong</au><au>Xiong, Guangming</au><au>Chen, Huiyan</au><au>Huang, Wanning</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</atitle><btitle>2007 International Conference on Computational Intelligence and Security (CIS 2007)</btitle><stitle>ICCIAS</stitle><date>2007-12</date><risdate>2007</risdate><spage>137</spage><epage>141</epage><pages>137-141</pages><isbn>9780769530727</isbn><isbn>0769530729</isbn><eisbn>9780769530727</eisbn><eisbn>0769530729</eisbn><abstract>In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.</abstract><pub>IEEE</pub><doi>10.1109/CIS.2007.195</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769530727
ispartof 2007 International Conference on Computational Intelligence and Security (CIS 2007), 2007, p.137-141
issn
language eng
recordid cdi_ieee_primary_4415318
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational intelligence
Costs
Feedback control
Genetic algorithms
Hybrid intelligent systems
Intelligent robots
Intelligent vehicles
Multirobot systems
Security
Vehicle dynamics
title A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20GA%20Based%20Combinatorial%20Auction%20Algorithm%20for%20Multi-Robot%20Cooperative%20Hunting&rft.btitle=2007%20International%20Conference%20on%20Computational%20Intelligence%20and%20Security%20(CIS%202007)&rft.au=Gong,%20Jianwei&rft.date=2007-12&rft.spage=137&rft.epage=141&rft.pages=137-141&rft.isbn=9780769530727&rft.isbn_list=0769530729&rft_id=info:doi/10.1109/CIS.2007.195&rft_dat=%3Cieee_6IE%3E4415318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769530727&rft.eisbn_list=0769530729&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4415318&rfr_iscdi=true