A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting
In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the win...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | |
container_volume | |
creator | Gong, Jianwei Qi, Jianyong Xiong, Guangming Chen, Huiyan Huang, Wanning |
description | In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method. |
doi_str_mv | 10.1109/CIS.2007.195 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4415318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4415318</ieee_id><sourcerecordid>4415318</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-f739a200f85ef8af1207cfe0f523ec2e2c6f58780d21e36913a68bde76f566ba3</originalsourceid><addsrcrecordid>eNpdjktLw0AcxFdEUNrcvHnZL5C4j-7rGIO2hVrBx7lskv_WlSRbko3gt--CnpzLMD-GYRC6paSglJj7avtWMEJUQY24QJlRmihpBCeKqct_-Rpl0_RFkrjhhsgbtC_xusQPdoIWV6Gv_WBjGL3tcDk30YcBl90xgfjZYxdG_Dx30eevoQ4x9cMJRhv9N-DNPEQ_HJfoytluguzPF-jj6fG92uS7l_W2Kne5p0TE3ClubDrttACnraOMqMYBcYJxaBiwRjqh0_OWUeDSUG6lrltQCUtZW75Ad7-7HgAOp9H3dvw5rFZUcKr5GZk4To0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gong, Jianwei ; Qi, Jianyong ; Xiong, Guangming ; Chen, Huiyan ; Huang, Wanning</creator><creatorcontrib>Gong, Jianwei ; Qi, Jianyong ; Xiong, Guangming ; Chen, Huiyan ; Huang, Wanning</creatorcontrib><description>In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.</description><identifier>ISBN: 9780769530727</identifier><identifier>ISBN: 0769530729</identifier><identifier>EISBN: 9780769530727</identifier><identifier>EISBN: 0769530729</identifier><identifier>DOI: 10.1109/CIS.2007.195</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Costs ; Feedback control ; Genetic algorithms ; Hybrid intelligent systems ; Intelligent robots ; Intelligent vehicles ; Multirobot systems ; Security ; Vehicle dynamics</subject><ispartof>2007 International Conference on Computational Intelligence and Security (CIS 2007), 2007, p.137-141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4415318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4415318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Jianwei</creatorcontrib><creatorcontrib>Qi, Jianyong</creatorcontrib><creatorcontrib>Xiong, Guangming</creatorcontrib><creatorcontrib>Chen, Huiyan</creatorcontrib><creatorcontrib>Huang, Wanning</creatorcontrib><title>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</title><title>2007 International Conference on Computational Intelligence and Security (CIS 2007)</title><addtitle>ICCIAS</addtitle><description>In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.</description><subject>Computational intelligence</subject><subject>Costs</subject><subject>Feedback control</subject><subject>Genetic algorithms</subject><subject>Hybrid intelligent systems</subject><subject>Intelligent robots</subject><subject>Intelligent vehicles</subject><subject>Multirobot systems</subject><subject>Security</subject><subject>Vehicle dynamics</subject><isbn>9780769530727</isbn><isbn>0769530729</isbn><isbn>9780769530727</isbn><isbn>0769530729</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpdjktLw0AcxFdEUNrcvHnZL5C4j-7rGIO2hVrBx7lskv_WlSRbko3gt--CnpzLMD-GYRC6paSglJj7avtWMEJUQY24QJlRmihpBCeKqct_-Rpl0_RFkrjhhsgbtC_xusQPdoIWV6Gv_WBjGL3tcDk30YcBl90xgfjZYxdG_Dx30eevoQ4x9cMJRhv9N-DNPEQ_HJfoytluguzPF-jj6fG92uS7l_W2Kne5p0TE3ClubDrttACnraOMqMYBcYJxaBiwRjqh0_OWUeDSUG6lrltQCUtZW75Ad7-7HgAOp9H3dvw5rFZUcKr5GZk4To0</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Gong, Jianwei</creator><creator>Qi, Jianyong</creator><creator>Xiong, Guangming</creator><creator>Chen, Huiyan</creator><creator>Huang, Wanning</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</title><author>Gong, Jianwei ; Qi, Jianyong ; Xiong, Guangming ; Chen, Huiyan ; Huang, Wanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-f739a200f85ef8af1207cfe0f523ec2e2c6f58780d21e36913a68bde76f566ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational intelligence</topic><topic>Costs</topic><topic>Feedback control</topic><topic>Genetic algorithms</topic><topic>Hybrid intelligent systems</topic><topic>Intelligent robots</topic><topic>Intelligent vehicles</topic><topic>Multirobot systems</topic><topic>Security</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Gong, Jianwei</creatorcontrib><creatorcontrib>Qi, Jianyong</creatorcontrib><creatorcontrib>Xiong, Guangming</creatorcontrib><creatorcontrib>Chen, Huiyan</creatorcontrib><creatorcontrib>Huang, Wanning</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Jianwei</au><au>Qi, Jianyong</au><au>Xiong, Guangming</au><au>Chen, Huiyan</au><au>Huang, Wanning</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting</atitle><btitle>2007 International Conference on Computational Intelligence and Security (CIS 2007)</btitle><stitle>ICCIAS</stitle><date>2007-12</date><risdate>2007</risdate><spage>137</spage><epage>141</epage><pages>137-141</pages><isbn>9780769530727</isbn><isbn>0769530729</isbn><eisbn>9780769530727</eisbn><eisbn>0769530729</eisbn><abstract>In order to improve the hunting efficiency of multi- robot cooperative hunting in complicated environment: multi-target and dynamic continues surrounding, a combinatorial auction model based on genetic algorithm (GACA) was presented in this paper. The model adopted genetic algorithm to solve the winner determination problem in combinatorial auction. We also compared the combinatorial auction model based task allocation method with the traditional single item auction model in solving dynamic and complex task allocation problem in multi-robot cooperation. The simulation experiments were conducted in a self- developed visible multi-robot simulation platform, OpenSim, and the results showed the whole process of hunting was very smooth, and the cost time cost by our algorithm was much shorter than the compared method.</abstract><pub>IEEE</pub><doi>10.1109/CIS.2007.195</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769530727 |
ispartof | 2007 International Conference on Computational Intelligence and Security (CIS 2007), 2007, p.137-141 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4415318 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational intelligence Costs Feedback control Genetic algorithms Hybrid intelligent systems Intelligent robots Intelligent vehicles Multirobot systems Security Vehicle dynamics |
title | A GA Based Combinatorial Auction Algorithm for Multi-Robot Cooperative Hunting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20GA%20Based%20Combinatorial%20Auction%20Algorithm%20for%20Multi-Robot%20Cooperative%20Hunting&rft.btitle=2007%20International%20Conference%20on%20Computational%20Intelligence%20and%20Security%20(CIS%202007)&rft.au=Gong,%20Jianwei&rft.date=2007-12&rft.spage=137&rft.epage=141&rft.pages=137-141&rft.isbn=9780769530727&rft.isbn_list=0769530729&rft_id=info:doi/10.1109/CIS.2007.195&rft_dat=%3Cieee_6IE%3E4415318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769530727&rft.eisbn_list=0769530729&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4415318&rfr_iscdi=true |