Integrating Evidences of Independently Developed Face and Speaker Recognition Systems by Using Discrete Probability Density Function
User recognition is one of the most fundamental functionalities for intelligent service robots. However, in robot applications, the conditions are far severer compared to the traditional biometric security systems. The robots should be able to recognize users non-intrusively, which confines the avai...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 672 |
---|---|
container_issue | |
container_start_page | 667 |
container_title | |
container_volume | |
creator | Jaeyeon Lee DoHyung Kim Keun-Chang Kwak Hye-Jin Kim Ho-Sub Yoon |
description | User recognition is one of the most fundamental functionalities for intelligent service robots. However, in robot applications, the conditions are far severer compared to the traditional biometric security systems. The robots should be able to recognize users non-intrusively, which confines the available biometric features to face and voice. Also, the robots are expected to recognize users from relatively afar, which inevitably deteriorates the accuracy of each recognition module. In this paper, we tried to improve the overall accuracy by integrating the evidences issued by independently developed face and speaker recognition modules. Each recognition module exhibits different statistical characteristics in representing its confidence of the recognition. Therefore, it is essential to transform the evidences to a normalized form to integrate the results. This paper introduces a novel approach to integrate mutually independent multiple evidences to achieve an improved performance. Typical approach to this problem is to model the statistical characteristics of the evidences by well-known parametric form such as Gaussian. Using Mahalanobis distance is a good example. However, the characteristics of the evidences often do not fit into the parametric models, which results in performance degradation. To overcome this problem, we adopted a discrete PDF that can model the statistical characteristics as it is. To confirm the validity of the proposed method, we used a multi-modal database that consists of 10 registered users and 550 probe data. Each probe data contains face image and voice signal. Face and speaker recognition modules are applied to generate respective evidences. The experiment showed an improvement of 11.27% in accuracy compared to the individual recognizers, which is 2.72% better than the traditional Mahalanobis distance approach. |
doi_str_mv | 10.1109/ROMAN.2007.4415170 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4415170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4415170</ieee_id><sourcerecordid>4415170</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c910931cac87228e7fc040127d5c2ae3699e987a6c49b401f8c903628a123a683</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRc1LopT-AGz8Ayl-JbGXVWmhUqGoLevKcSaVIXWi2FTKng8nEYVZzNXoaM7iInRHyZhSoh7Wq5fJ65gRko6FoDFNyRm6oYJ1R8Jjfo4GVAkRKcHTCzRSqfxjQl3-MxFfo5H3H6QbEXPJ6QB9L1yAfaODdXs8O9ocnAGPqwIvXA41dMuFssWPcISyqiHHc20Aa5fjTQ36Exq8BlPtnQ22cnjT-gAHj7MWv_te-Wi9aSAAfmuqTGe2tKGXOd_n_MuZ_u0WXRW69DA65RBt57Pt9Dlarp4W08kysoqEyKiuCU6NNjJlTEJaGCIIZWkeG6aBJ0qBkqlOjFBZBwppFOEJk5oyrhPJh-j-V2sBYFc39qCbdnfqk_8AvpJmvw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating Evidences of Independently Developed Face and Speaker Recognition Systems by Using Discrete Probability Density Function</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaeyeon Lee ; DoHyung Kim ; Keun-Chang Kwak ; Hye-Jin Kim ; Ho-Sub Yoon</creator><creatorcontrib>Jaeyeon Lee ; DoHyung Kim ; Keun-Chang Kwak ; Hye-Jin Kim ; Ho-Sub Yoon</creatorcontrib><description>User recognition is one of the most fundamental functionalities for intelligent service robots. However, in robot applications, the conditions are far severer compared to the traditional biometric security systems. The robots should be able to recognize users non-intrusively, which confines the available biometric features to face and voice. Also, the robots are expected to recognize users from relatively afar, which inevitably deteriorates the accuracy of each recognition module. In this paper, we tried to improve the overall accuracy by integrating the evidences issued by independently developed face and speaker recognition modules. Each recognition module exhibits different statistical characteristics in representing its confidence of the recognition. Therefore, it is essential to transform the evidences to a normalized form to integrate the results. This paper introduces a novel approach to integrate mutually independent multiple evidences to achieve an improved performance. Typical approach to this problem is to model the statistical characteristics of the evidences by well-known parametric form such as Gaussian. Using Mahalanobis distance is a good example. However, the characteristics of the evidences often do not fit into the parametric models, which results in performance degradation. To overcome this problem, we adopted a discrete PDF that can model the statistical characteristics as it is. To confirm the validity of the proposed method, we used a multi-modal database that consists of 10 registered users and 550 probe data. Each probe data contains face image and voice signal. Face and speaker recognition modules are applied to generate respective evidences. The experiment showed an improvement of 11.27% in accuracy compared to the individual recognizers, which is 2.72% better than the traditional Mahalanobis distance approach.</description><identifier>ISSN: 1944-9445</identifier><identifier>ISBN: 9781424416349</identifier><identifier>ISBN: 1424416345</identifier><identifier>EISSN: 1944-9437</identifier><identifier>EISBN: 1424416353</identifier><identifier>EISBN: 9781424416356</identifier><identifier>DOI: 10.1109/ROMAN.2007.4415170</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Character recognition ; Face recognition ; Intelligent robots ; Probability density function ; Probes ; Security ; Service robots ; Speaker recognition ; Speech recognition</subject><ispartof>RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication, 2007, p.667-672</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4415170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4415170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaeyeon Lee</creatorcontrib><creatorcontrib>DoHyung Kim</creatorcontrib><creatorcontrib>Keun-Chang Kwak</creatorcontrib><creatorcontrib>Hye-Jin Kim</creatorcontrib><creatorcontrib>Ho-Sub Yoon</creatorcontrib><title>Integrating Evidences of Independently Developed Face and Speaker Recognition Systems by Using Discrete Probability Density Function</title><title>RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication</title><addtitle>ROMAN</addtitle><description>User recognition is one of the most fundamental functionalities for intelligent service robots. However, in robot applications, the conditions are far severer compared to the traditional biometric security systems. The robots should be able to recognize users non-intrusively, which confines the available biometric features to face and voice. Also, the robots are expected to recognize users from relatively afar, which inevitably deteriorates the accuracy of each recognition module. In this paper, we tried to improve the overall accuracy by integrating the evidences issued by independently developed face and speaker recognition modules. Each recognition module exhibits different statistical characteristics in representing its confidence of the recognition. Therefore, it is essential to transform the evidences to a normalized form to integrate the results. This paper introduces a novel approach to integrate mutually independent multiple evidences to achieve an improved performance. Typical approach to this problem is to model the statistical characteristics of the evidences by well-known parametric form such as Gaussian. Using Mahalanobis distance is a good example. However, the characteristics of the evidences often do not fit into the parametric models, which results in performance degradation. To overcome this problem, we adopted a discrete PDF that can model the statistical characteristics as it is. To confirm the validity of the proposed method, we used a multi-modal database that consists of 10 registered users and 550 probe data. Each probe data contains face image and voice signal. Face and speaker recognition modules are applied to generate respective evidences. The experiment showed an improvement of 11.27% in accuracy compared to the individual recognizers, which is 2.72% better than the traditional Mahalanobis distance approach.</description><subject>Biometrics</subject><subject>Character recognition</subject><subject>Face recognition</subject><subject>Intelligent robots</subject><subject>Probability density function</subject><subject>Probes</subject><subject>Security</subject><subject>Service robots</subject><subject>Speaker recognition</subject><subject>Speech recognition</subject><issn>1944-9445</issn><issn>1944-9437</issn><isbn>9781424416349</isbn><isbn>1424416345</isbn><isbn>1424416353</isbn><isbn>9781424416356</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRc1LopT-AGz8Ayl-JbGXVWmhUqGoLevKcSaVIXWi2FTKng8nEYVZzNXoaM7iInRHyZhSoh7Wq5fJ65gRko6FoDFNyRm6oYJ1R8Jjfo4GVAkRKcHTCzRSqfxjQl3-MxFfo5H3H6QbEXPJ6QB9L1yAfaODdXs8O9ocnAGPqwIvXA41dMuFssWPcISyqiHHc20Aa5fjTQ36Exq8BlPtnQ22cnjT-gAHj7MWv_te-Wi9aSAAfmuqTGe2tKGXOd_n_MuZ_u0WXRW69DA65RBt57Pt9Dlarp4W08kysoqEyKiuCU6NNjJlTEJaGCIIZWkeG6aBJ0qBkqlOjFBZBwppFOEJk5oyrhPJh-j-V2sBYFc39qCbdnfqk_8AvpJmvw</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Jaeyeon Lee</creator><creator>DoHyung Kim</creator><creator>Keun-Chang Kwak</creator><creator>Hye-Jin Kim</creator><creator>Ho-Sub Yoon</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Integrating Evidences of Independently Developed Face and Speaker Recognition Systems by Using Discrete Probability Density Function</title><author>Jaeyeon Lee ; DoHyung Kim ; Keun-Chang Kwak ; Hye-Jin Kim ; Ho-Sub Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c910931cac87228e7fc040127d5c2ae3699e987a6c49b401f8c903628a123a683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biometrics</topic><topic>Character recognition</topic><topic>Face recognition</topic><topic>Intelligent robots</topic><topic>Probability density function</topic><topic>Probes</topic><topic>Security</topic><topic>Service robots</topic><topic>Speaker recognition</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaeyeon Lee</creatorcontrib><creatorcontrib>DoHyung Kim</creatorcontrib><creatorcontrib>Keun-Chang Kwak</creatorcontrib><creatorcontrib>Hye-Jin Kim</creatorcontrib><creatorcontrib>Ho-Sub Yoon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaeyeon Lee</au><au>DoHyung Kim</au><au>Keun-Chang Kwak</au><au>Hye-Jin Kim</au><au>Ho-Sub Yoon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating Evidences of Independently Developed Face and Speaker Recognition Systems by Using Discrete Probability Density Function</atitle><btitle>RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication</btitle><stitle>ROMAN</stitle><date>2007-08</date><risdate>2007</risdate><spage>667</spage><epage>672</epage><pages>667-672</pages><issn>1944-9445</issn><eissn>1944-9437</eissn><isbn>9781424416349</isbn><isbn>1424416345</isbn><eisbn>1424416353</eisbn><eisbn>9781424416356</eisbn><abstract>User recognition is one of the most fundamental functionalities for intelligent service robots. However, in robot applications, the conditions are far severer compared to the traditional biometric security systems. The robots should be able to recognize users non-intrusively, which confines the available biometric features to face and voice. Also, the robots are expected to recognize users from relatively afar, which inevitably deteriorates the accuracy of each recognition module. In this paper, we tried to improve the overall accuracy by integrating the evidences issued by independently developed face and speaker recognition modules. Each recognition module exhibits different statistical characteristics in representing its confidence of the recognition. Therefore, it is essential to transform the evidences to a normalized form to integrate the results. This paper introduces a novel approach to integrate mutually independent multiple evidences to achieve an improved performance. Typical approach to this problem is to model the statistical characteristics of the evidences by well-known parametric form such as Gaussian. Using Mahalanobis distance is a good example. However, the characteristics of the evidences often do not fit into the parametric models, which results in performance degradation. To overcome this problem, we adopted a discrete PDF that can model the statistical characteristics as it is. To confirm the validity of the proposed method, we used a multi-modal database that consists of 10 registered users and 550 probe data. Each probe data contains face image and voice signal. Face and speaker recognition modules are applied to generate respective evidences. The experiment showed an improvement of 11.27% in accuracy compared to the individual recognizers, which is 2.72% better than the traditional Mahalanobis distance approach.</abstract><pub>IEEE</pub><doi>10.1109/ROMAN.2007.4415170</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1944-9445 |
ispartof | RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication, 2007, p.667-672 |
issn | 1944-9445 1944-9437 |
language | eng |
recordid | cdi_ieee_primary_4415170 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biometrics Character recognition Face recognition Intelligent robots Probability density function Probes Security Service robots Speaker recognition Speech recognition |
title | Integrating Evidences of Independently Developed Face and Speaker Recognition Systems by Using Discrete Probability Density Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20Evidences%20of%20Independently%20Developed%20Face%20and%20Speaker%20Recognition%20Systems%20by%20Using%20Discrete%20Probability%20Density%20Function&rft.btitle=RO-MAN%202007%20-%20The%2016th%20IEEE%20International%20Symposium%20on%20Robot%20and%20Human%20Interactive%20Communication&rft.au=Jaeyeon%20Lee&rft.date=2007-08&rft.spage=667&rft.epage=672&rft.pages=667-672&rft.issn=1944-9445&rft.eissn=1944-9437&rft.isbn=9781424416349&rft.isbn_list=1424416345&rft_id=info:doi/10.1109/ROMAN.2007.4415170&rft_dat=%3Cieee_6IE%3E4415170%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416353&rft.eisbn_list=9781424416356&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4415170&rfr_iscdi=true |