Personalized product recommendation based on customer value hierarchy
Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which in...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3254 |
---|---|
container_issue | |
container_start_page | 3250 |
container_title | |
container_volume | |
creator | Yangming Zhang Jiayin Qi Huaying Shu Jiantong Cao |
description | Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction. |
doi_str_mv | 10.1109/ICSMC.2007.4414194 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4414194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4414194</ieee_id><sourcerecordid>4414194</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8ec38c6e35bff73aa2543ef98a2bff18b9ad35e07a6bab8ea3afd96525aedf413</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhcefgmntC-gmL5B47_wkM0sJVQsVBbvortwkNzTSJGWSCvXpjVhX53A--BZHiDuEGBHcwzL7eM1iCZDGWqNGpy_E3KUWtdQanEN9KQJp0jTCxJgrMf0HsLkWAUIiIyflZiKmvw4nQRm8EdO-_wSQoNEGYvHOvu9a2tffXIYH35XHYgg9F13TcFvSUHdtmFM_wrEUx37oGvbhF-2PHO5q9uSL3elWTCra9zw_50ysnxbr7CVavT0vs8dVVDsYIsuFskXCyuRVlSoiabTiylmS44A2d1Qqw5BSklNumRRVpUuMNMRlpVHNxP2ftmbm7cHXDfnT9nyN-gHh61QT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized product recommendation based on customer value hierarchy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yangming Zhang ; Jiayin Qi ; Huaying Shu ; Jiantong Cao</creator><creatorcontrib>Yangming Zhang ; Jiayin Qi ; Huaying Shu ; Jiantong Cao</creatorcontrib><description>Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142440990X</identifier><identifier>ISBN: 9781424409907</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424409914</identifier><identifier>EISBN: 1424409918</identifier><identifier>DOI: 10.1109/ICSMC.2007.4414194</identifier><identifier>LCCN: 2007920351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Collaborative work ; Customer satisfaction ; Data analysis ; Demography ; Economic forecasting ; Filtering algorithms ; Mass customization ; Product design ; Recommender systems</subject><ispartof>2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.3250-3254</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4414194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4414194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yangming Zhang</creatorcontrib><creatorcontrib>Jiayin Qi</creatorcontrib><creatorcontrib>Huaying Shu</creatorcontrib><creatorcontrib>Jiantong Cao</creatorcontrib><title>Personalized product recommendation based on customer value hierarchy</title><title>2007 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.</description><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Customer satisfaction</subject><subject>Data analysis</subject><subject>Demography</subject><subject>Economic forecasting</subject><subject>Filtering algorithms</subject><subject>Mass customization</subject><subject>Product design</subject><subject>Recommender systems</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142440990X</isbn><isbn>9781424409907</isbn><isbn>9781424409914</isbn><isbn>1424409918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhcefgmntC-gmL5B47_wkM0sJVQsVBbvortwkNzTSJGWSCvXpjVhX53A--BZHiDuEGBHcwzL7eM1iCZDGWqNGpy_E3KUWtdQanEN9KQJp0jTCxJgrMf0HsLkWAUIiIyflZiKmvw4nQRm8EdO-_wSQoNEGYvHOvu9a2tffXIYH35XHYgg9F13TcFvSUHdtmFM_wrEUx37oGvbhF-2PHO5q9uSL3elWTCra9zw_50ysnxbr7CVavT0vs8dVVDsYIsuFskXCyuRVlSoiabTiylmS44A2d1Qqw5BSklNumRRVpUuMNMRlpVHNxP2ftmbm7cHXDfnT9nyN-gHh61QT</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Yangming Zhang</creator><creator>Jiayin Qi</creator><creator>Huaying Shu</creator><creator>Jiantong Cao</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Personalized product recommendation based on customer value hierarchy</title><author>Yangming Zhang ; Jiayin Qi ; Huaying Shu ; Jiantong Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8ec38c6e35bff73aa2543ef98a2bff18b9ad35e07a6bab8ea3afd96525aedf413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Customer satisfaction</topic><topic>Data analysis</topic><topic>Demography</topic><topic>Economic forecasting</topic><topic>Filtering algorithms</topic><topic>Mass customization</topic><topic>Product design</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Yangming Zhang</creatorcontrib><creatorcontrib>Jiayin Qi</creatorcontrib><creatorcontrib>Huaying Shu</creatorcontrib><creatorcontrib>Jiantong Cao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yangming Zhang</au><au>Jiayin Qi</au><au>Huaying Shu</au><au>Jiantong Cao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized product recommendation based on customer value hierarchy</atitle><btitle>2007 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2007-10</date><risdate>2007</risdate><spage>3250</spage><epage>3254</epage><pages>3250-3254</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142440990X</isbn><isbn>9781424409907</isbn><eisbn>9781424409914</eisbn><eisbn>1424409918</eisbn><abstract>Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2007.4414194</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.3250-3254 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_4414194 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Collaboration Collaborative work Customer satisfaction Data analysis Demography Economic forecasting Filtering algorithms Mass customization Product design Recommender systems |
title | Personalized product recommendation based on customer value hierarchy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20product%20recommendation%20based%20on%20customer%20value%20hierarchy&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Yangming%20Zhang&rft.date=2007-10&rft.spage=3250&rft.epage=3254&rft.pages=3250-3254&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142440990X&rft.isbn_list=9781424409907&rft_id=info:doi/10.1109/ICSMC.2007.4414194&rft_dat=%3Cieee_6IE%3E4414194%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409914&rft.eisbn_list=1424409918&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4414194&rfr_iscdi=true |