Personalized product recommendation based on customer value hierarchy

Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yangming Zhang, Jiayin Qi, Huaying Shu, Jiantong Cao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3254
container_issue
container_start_page 3250
container_title
container_volume
creator Yangming Zhang
Jiayin Qi
Huaying Shu
Jiantong Cao
description Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.
doi_str_mv 10.1109/ICSMC.2007.4414194
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4414194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4414194</ieee_id><sourcerecordid>4414194</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8ec38c6e35bff73aa2543ef98a2bff18b9ad35e07a6bab8ea3afd96525aedf413</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhcefgmntC-gmL5B47_wkM0sJVQsVBbvortwkNzTSJGWSCvXpjVhX53A--BZHiDuEGBHcwzL7eM1iCZDGWqNGpy_E3KUWtdQanEN9KQJp0jTCxJgrMf0HsLkWAUIiIyflZiKmvw4nQRm8EdO-_wSQoNEGYvHOvu9a2tffXIYH35XHYgg9F13TcFvSUHdtmFM_wrEUx37oGvbhF-2PHO5q9uSL3elWTCra9zw_50ysnxbr7CVavT0vs8dVVDsYIsuFskXCyuRVlSoiabTiylmS44A2d1Qqw5BSklNumRRVpUuMNMRlpVHNxP2ftmbm7cHXDfnT9nyN-gHh61QT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized product recommendation based on customer value hierarchy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yangming Zhang ; Jiayin Qi ; Huaying Shu ; Jiantong Cao</creator><creatorcontrib>Yangming Zhang ; Jiayin Qi ; Huaying Shu ; Jiantong Cao</creatorcontrib><description>Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142440990X</identifier><identifier>ISBN: 9781424409907</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424409914</identifier><identifier>EISBN: 1424409918</identifier><identifier>DOI: 10.1109/ICSMC.2007.4414194</identifier><identifier>LCCN: 2007920351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Collaborative work ; Customer satisfaction ; Data analysis ; Demography ; Economic forecasting ; Filtering algorithms ; Mass customization ; Product design ; Recommender systems</subject><ispartof>2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.3250-3254</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4414194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4414194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yangming Zhang</creatorcontrib><creatorcontrib>Jiayin Qi</creatorcontrib><creatorcontrib>Huaying Shu</creatorcontrib><creatorcontrib>Jiantong Cao</creatorcontrib><title>Personalized product recommendation based on customer value hierarchy</title><title>2007 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.</description><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Customer satisfaction</subject><subject>Data analysis</subject><subject>Demography</subject><subject>Economic forecasting</subject><subject>Filtering algorithms</subject><subject>Mass customization</subject><subject>Product design</subject><subject>Recommender systems</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142440990X</isbn><isbn>9781424409907</isbn><isbn>9781424409914</isbn><isbn>1424409918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhcefgmntC-gmL5B47_wkM0sJVQsVBbvortwkNzTSJGWSCvXpjVhX53A--BZHiDuEGBHcwzL7eM1iCZDGWqNGpy_E3KUWtdQanEN9KQJp0jTCxJgrMf0HsLkWAUIiIyflZiKmvw4nQRm8EdO-_wSQoNEGYvHOvu9a2tffXIYH35XHYgg9F13TcFvSUHdtmFM_wrEUx37oGvbhF-2PHO5q9uSL3elWTCra9zw_50ysnxbr7CVavT0vs8dVVDsYIsuFskXCyuRVlSoiabTiylmS44A2d1Qqw5BSklNumRRVpUuMNMRlpVHNxP2ftmbm7cHXDfnT9nyN-gHh61QT</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Yangming Zhang</creator><creator>Jiayin Qi</creator><creator>Huaying Shu</creator><creator>Jiantong Cao</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Personalized product recommendation based on customer value hierarchy</title><author>Yangming Zhang ; Jiayin Qi ; Huaying Shu ; Jiantong Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8ec38c6e35bff73aa2543ef98a2bff18b9ad35e07a6bab8ea3afd96525aedf413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Customer satisfaction</topic><topic>Data analysis</topic><topic>Demography</topic><topic>Economic forecasting</topic><topic>Filtering algorithms</topic><topic>Mass customization</topic><topic>Product design</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Yangming Zhang</creatorcontrib><creatorcontrib>Jiayin Qi</creatorcontrib><creatorcontrib>Huaying Shu</creatorcontrib><creatorcontrib>Jiantong Cao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yangming Zhang</au><au>Jiayin Qi</au><au>Huaying Shu</au><au>Jiantong Cao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized product recommendation based on customer value hierarchy</atitle><btitle>2007 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2007-10</date><risdate>2007</risdate><spage>3250</spage><epage>3254</epage><pages>3250-3254</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142440990X</isbn><isbn>9781424409907</isbn><eisbn>9781424409914</eisbn><eisbn>1424409918</eisbn><abstract>Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in e-commerce nowadays. In this article, we present a novel product recommendation approach, which involves customer value hierarchy model into traditional recommender systems. This approach is divided into two phases. Product categories are recommended using the collaborative filtering algorithm in the first phase. In phase II, product items are recommended, based on customer value hierarchy model, to customers whose purchasing goals are met by these products' attributes. In contrast to traditional approaches, which provide recommendation by the opinions of customers with the similar purchasing behavior, the proposed approaches root out customer's purchasing motivation and maximize customer satisfaction.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2007.4414194</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.3250-3254
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_4414194
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Collaboration
Collaborative work
Customer satisfaction
Data analysis
Demography
Economic forecasting
Filtering algorithms
Mass customization
Product design
Recommender systems
title Personalized product recommendation based on customer value hierarchy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20product%20recommendation%20based%20on%20customer%20value%20hierarchy&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Yangming%20Zhang&rft.date=2007-10&rft.spage=3250&rft.epage=3254&rft.pages=3250-3254&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142440990X&rft.isbn_list=9781424409907&rft_id=info:doi/10.1109/ICSMC.2007.4414194&rft_dat=%3Cieee_6IE%3E4414194%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409914&rft.eisbn_list=1424409918&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4414194&rfr_iscdi=true