A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm

The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chung-Chun Kung, Jui-Yiao Su
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue
container_start_page 853
container_title
container_volume
creator Chung-Chun Kung
Jui-Yiao Su
description The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.
doi_str_mv 10.1109/ICSMC.2007.4413894
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4413894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4413894</ieee_id><sourcerecordid>4413894</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-107b300f74bbac4674b1ac580de82496ff322400a29b4604c1e1f8a5179bc2773</originalsourceid><addsrcrecordid>eNo1kM1uwjAQhN0fpALlBdqLXyB019nE8RFFpUWi6qEckHpATmKDq0AqO1QKT99UhdNoZjTfYRh7QJgignpa5B9v-VQAyCkRxpmiKzZRMkMSRKAU0jUbikTKCNMkuWGjSwHrWzZESEWkhFgP2OiPoQTECd6xUQhfAAIIsyH7nPHQHquON5aX9TG0xvMfXbvKtR0vveu909w2nrc7w-3xdOrjyJutNyG45sD3TWXqcNm6w5bretv0w93-ng2sroOZnHXMVvPnVf4aLd9fFvlsGTkFbYQgixjASioKXVLaK-oyyaAymSCVWhsLQQBaqIJSoBIN2kwnKFVRCinjMXv8xzpjzObbu7323eZ8WPwLsL5Z7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chung-Chun Kung ; Jui-Yiao Su</creator><creatorcontrib>Chung-Chun Kung ; Jui-Yiao Su</creatorcontrib><description>The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142440990X</identifier><identifier>ISBN: 9781424409907</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424409914</identifier><identifier>EISBN: 1424409918</identifier><identifier>DOI: 10.1109/ICSMC.2007.4413894</identifier><identifier>LCCN: 2007920351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Fuzzy systems ; Input variables ; Nonlinear systems ; Partitioning algorithms</subject><ispartof>2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.853-858</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4413894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4413894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chung-Chun Kung</creatorcontrib><creatorcontrib>Jui-Yiao Su</creatorcontrib><title>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</title><title>2007 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Fuzzy systems</subject><subject>Input variables</subject><subject>Nonlinear systems</subject><subject>Partitioning algorithms</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142440990X</isbn><isbn>9781424409907</isbn><isbn>9781424409914</isbn><isbn>1424409918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1uwjAQhN0fpALlBdqLXyB019nE8RFFpUWi6qEckHpATmKDq0AqO1QKT99UhdNoZjTfYRh7QJgignpa5B9v-VQAyCkRxpmiKzZRMkMSRKAU0jUbikTKCNMkuWGjSwHrWzZESEWkhFgP2OiPoQTECd6xUQhfAAIIsyH7nPHQHquON5aX9TG0xvMfXbvKtR0vveu909w2nrc7w-3xdOrjyJutNyG45sD3TWXqcNm6w5bretv0w93-ng2sroOZnHXMVvPnVf4aLd9fFvlsGTkFbYQgixjASioKXVLaK-oyyaAymSCVWhsLQQBaqIJSoBIN2kwnKFVRCinjMXv8xzpjzObbu7323eZ8WPwLsL5Z7A</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Chung-Chun Kung</creator><creator>Jui-Yiao Su</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</title><author>Chung-Chun Kung ; Jui-Yiao Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-107b300f74bbac4674b1ac580de82496ff322400a29b4604c1e1f8a5179bc2773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Fuzzy systems</topic><topic>Input variables</topic><topic>Nonlinear systems</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chung-Chun Kung</creatorcontrib><creatorcontrib>Jui-Yiao Su</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chung-Chun Kung</au><au>Jui-Yiao Su</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</atitle><btitle>2007 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2007-10</date><risdate>2007</risdate><spage>853</spage><epage>858</epage><pages>853-858</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142440990X</isbn><isbn>9781424409907</isbn><eisbn>9781424409914</eisbn><eisbn>1424409918</eisbn><abstract>The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2007.4413894</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.853-858
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_4413894
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Fuzzy systems
Input variables
Nonlinear systems
Partitioning algorithms
title A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20study%20of%20cluster%20validity%20criteria%20for%20the%20fuzzy%20c-regression%20models%20clustering%20algorithm&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Chung-Chun%20Kung&rft.date=2007-10&rft.spage=853&rft.epage=858&rft.pages=853-858&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142440990X&rft.isbn_list=9781424409907&rft_id=info:doi/10.1109/ICSMC.2007.4413894&rft_dat=%3Cieee_6IE%3E4413894%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409914&rft.eisbn_list=1424409918&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4413894&rfr_iscdi=true