A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm
The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 858 |
---|---|
container_issue | |
container_start_page | 853 |
container_title | |
container_volume | |
creator | Chung-Chun Kung Jui-Yiao Su |
description | The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number. |
doi_str_mv | 10.1109/ICSMC.2007.4413894 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4413894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4413894</ieee_id><sourcerecordid>4413894</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-107b300f74bbac4674b1ac580de82496ff322400a29b4604c1e1f8a5179bc2773</originalsourceid><addsrcrecordid>eNo1kM1uwjAQhN0fpALlBdqLXyB019nE8RFFpUWi6qEckHpATmKDq0AqO1QKT99UhdNoZjTfYRh7QJgignpa5B9v-VQAyCkRxpmiKzZRMkMSRKAU0jUbikTKCNMkuWGjSwHrWzZESEWkhFgP2OiPoQTECd6xUQhfAAIIsyH7nPHQHquON5aX9TG0xvMfXbvKtR0vveu909w2nrc7w-3xdOrjyJutNyG45sD3TWXqcNm6w5bretv0w93-ng2sroOZnHXMVvPnVf4aLd9fFvlsGTkFbYQgixjASioKXVLaK-oyyaAymSCVWhsLQQBaqIJSoBIN2kwnKFVRCinjMXv8xzpjzObbu7323eZ8WPwLsL5Z7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chung-Chun Kung ; Jui-Yiao Su</creator><creatorcontrib>Chung-Chun Kung ; Jui-Yiao Su</creatorcontrib><description>The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142440990X</identifier><identifier>ISBN: 9781424409907</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424409914</identifier><identifier>EISBN: 1424409918</identifier><identifier>DOI: 10.1109/ICSMC.2007.4413894</identifier><identifier>LCCN: 2007920351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Fuzzy systems ; Input variables ; Nonlinear systems ; Partitioning algorithms</subject><ispartof>2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.853-858</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4413894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4413894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chung-Chun Kung</creatorcontrib><creatorcontrib>Jui-Yiao Su</creatorcontrib><title>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</title><title>2007 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Fuzzy systems</subject><subject>Input variables</subject><subject>Nonlinear systems</subject><subject>Partitioning algorithms</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142440990X</isbn><isbn>9781424409907</isbn><isbn>9781424409914</isbn><isbn>1424409918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1uwjAQhN0fpALlBdqLXyB019nE8RFFpUWi6qEckHpATmKDq0AqO1QKT99UhdNoZjTfYRh7QJgignpa5B9v-VQAyCkRxpmiKzZRMkMSRKAU0jUbikTKCNMkuWGjSwHrWzZESEWkhFgP2OiPoQTECd6xUQhfAAIIsyH7nPHQHquON5aX9TG0xvMfXbvKtR0vveu909w2nrc7w-3xdOrjyJutNyG45sD3TWXqcNm6w5bretv0w93-ng2sroOZnHXMVvPnVf4aLd9fFvlsGTkFbYQgixjASioKXVLaK-oyyaAymSCVWhsLQQBaqIJSoBIN2kwnKFVRCinjMXv8xzpjzObbu7323eZ8WPwLsL5Z7A</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Chung-Chun Kung</creator><creator>Jui-Yiao Su</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</title><author>Chung-Chun Kung ; Jui-Yiao Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-107b300f74bbac4674b1ac580de82496ff322400a29b4604c1e1f8a5179bc2773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Fuzzy systems</topic><topic>Input variables</topic><topic>Nonlinear systems</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chung-Chun Kung</creatorcontrib><creatorcontrib>Jui-Yiao Su</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chung-Chun Kung</au><au>Jui-Yiao Su</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm</atitle><btitle>2007 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2007-10</date><risdate>2007</risdate><spage>853</spage><epage>858</epage><pages>853-858</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142440990X</isbn><isbn>9781424409907</isbn><eisbn>9781424409914</eisbn><eisbn>1424409918</eisbn><abstract>The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems. To date, only a few cluster validity criteria have been proposed for the FCRM clustering algorithm to validate the partitions produced by the FCRM clustering algorithm. In this article, we examine the role of a subtle but important parameter - the weighting exponent m - plays in determining the validity of FCRM partitions. The criteria considered are the partition coefficient and two cluster validity criteria we have proposed before. The limit analysis is applied to study the behavior of these cluster validity criteria as mrarr1 and mrarrinfin . It is shown that the proposed cluster validity criteria provide well responses over a wide range of m to choose the correct cluster number.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2007.4413894</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.853-858 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_4413894 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Clustering algorithms Fuzzy systems Input variables Nonlinear systems Partitioning algorithms |
title | A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20study%20of%20cluster%20validity%20criteria%20for%20the%20fuzzy%20c-regression%20models%20clustering%20algorithm&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Chung-Chun%20Kung&rft.date=2007-10&rft.spage=853&rft.epage=858&rft.pages=853-858&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142440990X&rft.isbn_list=9781424409907&rft_id=info:doi/10.1109/ICSMC.2007.4413894&rft_dat=%3Cieee_6IE%3E4413894%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409914&rft.eisbn_list=1424409918&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4413894&rfr_iscdi=true |