Combined hybrid clustering techniques and neural fuzzy networks to predict diesel engine emissions

This paper presents a neural fuzzy modeling approach based on hybrid clustering technique to predict a diesel engine's NOx emissions. A hybrid clustering algorithm is provided. Since the combustion process is very complicated, therefore, it is almost impossible to find a simple and accurate fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deng, Jiamei, Stobart, Richard, Plianos, Alexnndros
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3614
container_issue
container_start_page 3609
container_title
container_volume
creator Deng, Jiamei
Stobart, Richard
Plianos, Alexnndros
description This paper presents a neural fuzzy modeling approach based on hybrid clustering technique to predict a diesel engine's NOx emissions. A hybrid clustering algorithm is provided. Since the combustion process is very complicated, therefore, it is almost impossible to find a simple and accurate first principle model to predict diesel emissions. Black-box models implementing Artificial Intelligent Techniques must be developed. Fuzzy modeling seems to be one of the most suitable approach for modeling diesel emissions with big oscillations and high frequency. Clustering is used with fuzzy modeling approach for determining fuzzy if-then rules, so that a fuzzy network, trained with back propagation, adjusts the centers and widths of the membership function. This paper uses hybrid clustering techniques to build a neural fuzzy model successfully. The results show that the model has very good accuracy in predicting diesel engine's NOx emissions.
doi_str_mv 10.1109/ICSMC.2007.4413857
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4413857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4413857</ieee_id><sourcerecordid>4413857</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ee8a590b641d3c90fd1e10c3449a407d58d4881942f0376a4a016ebcaa03de9f3</originalsourceid><addsrcrecordid>eNo10M1OwkAUBeDxh0RAXkA38wLFe-en7SxNI0qCcSELdmTauYXR0mKnjYGnFyOuTk5O8i0OY3cIU0QwD_Ps_TWbCoBkqhTKVCcXbGKSFJVQCoxBdcmGQidJhLHWV2z0P8Dqmg0RYhEZIVYDNvo1jACp8YaNQvgAEKAwHbI8a3a5r8nx7SFvveNF1YeOWl9veEfFtvZfPQVua8dr6ltb8bI_Hg-n0n037WfgXcP3LTlfdNx5ClRxqjcnkNPOh-CbOtyyQWmrQJNzjtly9rTMXqLF2_M8e1xE3kAXEaVWG8hjhU4WBkqHhFBIpYxVkDidOpWmaJQoQSaxVRYwprywFqQjU8oxu_9jPRGt963f2fawPv8mfwAKyF2G</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combined hybrid clustering techniques and neural fuzzy networks to predict diesel engine emissions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deng, Jiamei ; Stobart, Richard ; Plianos, Alexnndros</creator><creatorcontrib>Deng, Jiamei ; Stobart, Richard ; Plianos, Alexnndros</creatorcontrib><description>This paper presents a neural fuzzy modeling approach based on hybrid clustering technique to predict a diesel engine's NOx emissions. A hybrid clustering algorithm is provided. Since the combustion process is very complicated, therefore, it is almost impossible to find a simple and accurate first principle model to predict diesel emissions. Black-box models implementing Artificial Intelligent Techniques must be developed. Fuzzy modeling seems to be one of the most suitable approach for modeling diesel emissions with big oscillations and high frequency. Clustering is used with fuzzy modeling approach for determining fuzzy if-then rules, so that a fuzzy network, trained with back propagation, adjusts the centers and widths of the membership function. This paper uses hybrid clustering techniques to build a neural fuzzy model successfully. The results show that the model has very good accuracy in predicting diesel engine's NOx emissions.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142440990X</identifier><identifier>ISBN: 9781424409907</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424409914</identifier><identifier>EISBN: 1424409918</identifier><identifier>DOI: 10.1109/ICSMC.2007.4413857</identifier><identifier>LCCN: 2007920351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Clustering algorithms ; clustering techniques ; Combustion ; Computational fluid dynamics ; Design engineering ; diesel engine ; Diesel engines ; emissions ; Frequency ; Fuzzy neural networks ; membership function ; neural fuzzy network ; Predictive models</subject><ispartof>2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.3609-3614</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4413857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4413857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, Jiamei</creatorcontrib><creatorcontrib>Stobart, Richard</creatorcontrib><creatorcontrib>Plianos, Alexnndros</creatorcontrib><title>Combined hybrid clustering techniques and neural fuzzy networks to predict diesel engine emissions</title><title>2007 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>This paper presents a neural fuzzy modeling approach based on hybrid clustering technique to predict a diesel engine's NOx emissions. A hybrid clustering algorithm is provided. Since the combustion process is very complicated, therefore, it is almost impossible to find a simple and accurate first principle model to predict diesel emissions. Black-box models implementing Artificial Intelligent Techniques must be developed. Fuzzy modeling seems to be one of the most suitable approach for modeling diesel emissions with big oscillations and high frequency. Clustering is used with fuzzy modeling approach for determining fuzzy if-then rules, so that a fuzzy network, trained with back propagation, adjusts the centers and widths of the membership function. This paper uses hybrid clustering techniques to build a neural fuzzy model successfully. The results show that the model has very good accuracy in predicting diesel engine's NOx emissions.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Clustering algorithms</subject><subject>clustering techniques</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Design engineering</subject><subject>diesel engine</subject><subject>Diesel engines</subject><subject>emissions</subject><subject>Frequency</subject><subject>Fuzzy neural networks</subject><subject>membership function</subject><subject>neural fuzzy network</subject><subject>Predictive models</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142440990X</isbn><isbn>9781424409907</isbn><isbn>9781424409914</isbn><isbn>1424409918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo10M1OwkAUBeDxh0RAXkA38wLFe-en7SxNI0qCcSELdmTauYXR0mKnjYGnFyOuTk5O8i0OY3cIU0QwD_Ps_TWbCoBkqhTKVCcXbGKSFJVQCoxBdcmGQidJhLHWV2z0P8Dqmg0RYhEZIVYDNvo1jACp8YaNQvgAEKAwHbI8a3a5r8nx7SFvveNF1YeOWl9veEfFtvZfPQVua8dr6ltb8bI_Hg-n0n037WfgXcP3LTlfdNx5ClRxqjcnkNPOh-CbOtyyQWmrQJNzjtly9rTMXqLF2_M8e1xE3kAXEaVWG8hjhU4WBkqHhFBIpYxVkDidOpWmaJQoQSaxVRYwprywFqQjU8oxu_9jPRGt963f2fawPv8mfwAKyF2G</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Deng, Jiamei</creator><creator>Stobart, Richard</creator><creator>Plianos, Alexnndros</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Combined hybrid clustering techniques and neural fuzzy networks to predict diesel engine emissions</title><author>Deng, Jiamei ; Stobart, Richard ; Plianos, Alexnndros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ee8a590b641d3c90fd1e10c3449a407d58d4881942f0376a4a016ebcaa03de9f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Clustering algorithms</topic><topic>clustering techniques</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Design engineering</topic><topic>diesel engine</topic><topic>Diesel engines</topic><topic>emissions</topic><topic>Frequency</topic><topic>Fuzzy neural networks</topic><topic>membership function</topic><topic>neural fuzzy network</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, Jiamei</creatorcontrib><creatorcontrib>Stobart, Richard</creatorcontrib><creatorcontrib>Plianos, Alexnndros</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Jiamei</au><au>Stobart, Richard</au><au>Plianos, Alexnndros</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combined hybrid clustering techniques and neural fuzzy networks to predict diesel engine emissions</atitle><btitle>2007 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2007-10</date><risdate>2007</risdate><spage>3609</spage><epage>3614</epage><pages>3609-3614</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142440990X</isbn><isbn>9781424409907</isbn><eisbn>9781424409914</eisbn><eisbn>1424409918</eisbn><abstract>This paper presents a neural fuzzy modeling approach based on hybrid clustering technique to predict a diesel engine's NOx emissions. A hybrid clustering algorithm is provided. Since the combustion process is very complicated, therefore, it is almost impossible to find a simple and accurate first principle model to predict diesel emissions. Black-box models implementing Artificial Intelligent Techniques must be developed. Fuzzy modeling seems to be one of the most suitable approach for modeling diesel emissions with big oscillations and high frequency. Clustering is used with fuzzy modeling approach for determining fuzzy if-then rules, so that a fuzzy network, trained with back propagation, adjusts the centers and widths of the membership function. This paper uses hybrid clustering techniques to build a neural fuzzy model successfully. The results show that the model has very good accuracy in predicting diesel engine's NOx emissions.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2007.4413857</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, p.3609-3614
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_4413857
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Clustering algorithms
clustering techniques
Combustion
Computational fluid dynamics
Design engineering
diesel engine
Diesel engines
emissions
Frequency
Fuzzy neural networks
membership function
neural fuzzy network
Predictive models
title Combined hybrid clustering techniques and neural fuzzy networks to predict diesel engine emissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combined%20hybrid%20clustering%20techniques%20and%20neural%20fuzzy%20networks%20to%20predict%20diesel%20engine%20emissions&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Deng,%20Jiamei&rft.date=2007-10&rft.spage=3609&rft.epage=3614&rft.pages=3609-3614&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142440990X&rft.isbn_list=9781424409907&rft_id=info:doi/10.1109/ICSMC.2007.4413857&rft_dat=%3Cieee_6IE%3E4413857%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409914&rft.eisbn_list=1424409918&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4413857&rfr_iscdi=true