Embodied and evolved dynamical neural networks for robust planetary navigation

The N.E.Me.Sys project has the aim of controlling a legged rover for planetary exploration using dynamical recurrent neural networks and evolutionary algorithms. This paper describes the realization of the navigation module of such a rover using a 2D chemiotaxis scenario, in which the agent must rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cortesi, M., Sangiovanni, G., Zazzera, F.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Cortesi, M.
Sangiovanni, G.
Zazzera, F.B.
description The N.E.Me.Sys project has the aim of controlling a legged rover for planetary exploration using dynamical recurrent neural networks and evolutionary algorithms. This paper describes the realization of the navigation module of such a rover using a 2D chemiotaxis scenario, in which the agent must reach the source of a chemical signal. The analyses carried out in this work show the high degree of robustness of the neuro-controller versus uncertainties, noise, errors, or unpredicted situations. Moreover an analysis of the topology of the network has been realized in order to find the reasons of the good performances of the proposed methodology: it is possible to prove that different individuals share the same topology, i.e. the evolutionary process looks for the same feedback paths more than for the optimal set of parameters.
doi_str_mv 10.1109/AIM.2007.4412557
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4412557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4412557</ieee_id><sourcerecordid>4412557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dd12b50ac70c64d6bbc776458b57f4b8899e4e72b36223bd4b3b3d59e03c62fc3</originalsourceid><addsrcrecordid>eNo9kElPwzAUhM0mUUruSFz8B1K8L8eqaqFSgUvvlbcgQxJXThrUf0-AwmnezCc9jQaAO4xmGCP9MF8_zwhCcsYYJpzLM1BoqTAj314wdQ4mBHNdihFegJs_QOnlP2DyGhRd944QwkhxQugEvCwbm3wMHprWwzCkehhvf2xNE52pYRsO-Uf6z5Q_OlilDHOyh66H-9qMsclH2Johvpk-pvYWXFWm7kJx0inYrpbbxVO5eX1cL-abMmrUl95jYjkyTiInmBfWOikF48pyWTGrlNaBBUksFWNJ65mllnquA6JOkMrRKbj_fRtDCLt9js1YY3dahn4B7PhToA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Embodied and evolved dynamical neural networks for robust planetary navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cortesi, M. ; Sangiovanni, G. ; Zazzera, F.B.</creator><creatorcontrib>Cortesi, M. ; Sangiovanni, G. ; Zazzera, F.B.</creatorcontrib><description>The N.E.Me.Sys project has the aim of controlling a legged rover for planetary exploration using dynamical recurrent neural networks and evolutionary algorithms. This paper describes the realization of the navigation module of such a rover using a 2D chemiotaxis scenario, in which the agent must reach the source of a chemical signal. The analyses carried out in this work show the high degree of robustness of the neuro-controller versus uncertainties, noise, errors, or unpredicted situations. Moreover an analysis of the topology of the network has been realized in order to find the reasons of the good performances of the proposed methodology: it is possible to prove that different individuals share the same topology, i.e. the evolutionary process looks for the same feedback paths more than for the optimal set of parameters.</description><identifier>ISSN: 2159-6247</identifier><identifier>ISBN: 1424412633</identifier><identifier>ISBN: 9781424412631</identifier><identifier>EISSN: 2159-6255</identifier><identifier>EISBN: 9781424412648</identifier><identifier>EISBN: 1424412641</identifier><identifier>DOI: 10.1109/AIM.2007.4412557</identifier><language>eng</language><publisher>IEEE</publisher><subject>biomimicry ; Control systems ; evolutionary algorithms ; Evolutionary computation ; Navigation ; Network topology ; neural controller ; Neural networks ; Neurons ; Recurrent neural networks ; Robust control ; Robustness ; Uncertainty</subject><ispartof>2007 IEEE/ASME international conference on advanced intelligent mechatronics, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4412557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4412557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cortesi, M.</creatorcontrib><creatorcontrib>Sangiovanni, G.</creatorcontrib><creatorcontrib>Zazzera, F.B.</creatorcontrib><title>Embodied and evolved dynamical neural networks for robust planetary navigation</title><title>2007 IEEE/ASME international conference on advanced intelligent mechatronics</title><addtitle>AIM</addtitle><description>The N.E.Me.Sys project has the aim of controlling a legged rover for planetary exploration using dynamical recurrent neural networks and evolutionary algorithms. This paper describes the realization of the navigation module of such a rover using a 2D chemiotaxis scenario, in which the agent must reach the source of a chemical signal. The analyses carried out in this work show the high degree of robustness of the neuro-controller versus uncertainties, noise, errors, or unpredicted situations. Moreover an analysis of the topology of the network has been realized in order to find the reasons of the good performances of the proposed methodology: it is possible to prove that different individuals share the same topology, i.e. the evolutionary process looks for the same feedback paths more than for the optimal set of parameters.</description><subject>biomimicry</subject><subject>Control systems</subject><subject>evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Navigation</subject><subject>Network topology</subject><subject>neural controller</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Uncertainty</subject><issn>2159-6247</issn><issn>2159-6255</issn><isbn>1424412633</isbn><isbn>9781424412631</isbn><isbn>9781424412648</isbn><isbn>1424412641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kElPwzAUhM0mUUruSFz8B1K8L8eqaqFSgUvvlbcgQxJXThrUf0-AwmnezCc9jQaAO4xmGCP9MF8_zwhCcsYYJpzLM1BoqTAj314wdQ4mBHNdihFegJs_QOnlP2DyGhRd944QwkhxQugEvCwbm3wMHprWwzCkehhvf2xNE52pYRsO-Uf6z5Q_OlilDHOyh66H-9qMsclH2Johvpk-pvYWXFWm7kJx0inYrpbbxVO5eX1cL-abMmrUl95jYjkyTiInmBfWOikF48pyWTGrlNaBBUksFWNJ65mllnquA6JOkMrRKbj_fRtDCLt9js1YY3dahn4B7PhToA</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Cortesi, M.</creator><creator>Sangiovanni, G.</creator><creator>Zazzera, F.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Embodied and evolved dynamical neural networks for robust planetary navigation</title><author>Cortesi, M. ; Sangiovanni, G. ; Zazzera, F.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dd12b50ac70c64d6bbc776458b57f4b8899e4e72b36223bd4b3b3d59e03c62fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>biomimicry</topic><topic>Control systems</topic><topic>evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Navigation</topic><topic>Network topology</topic><topic>neural controller</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Cortesi, M.</creatorcontrib><creatorcontrib>Sangiovanni, G.</creatorcontrib><creatorcontrib>Zazzera, F.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cortesi, M.</au><au>Sangiovanni, G.</au><au>Zazzera, F.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Embodied and evolved dynamical neural networks for robust planetary navigation</atitle><btitle>2007 IEEE/ASME international conference on advanced intelligent mechatronics</btitle><stitle>AIM</stitle><date>2007-09</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2159-6247</issn><eissn>2159-6255</eissn><isbn>1424412633</isbn><isbn>9781424412631</isbn><eisbn>9781424412648</eisbn><eisbn>1424412641</eisbn><abstract>The N.E.Me.Sys project has the aim of controlling a legged rover for planetary exploration using dynamical recurrent neural networks and evolutionary algorithms. This paper describes the realization of the navigation module of such a rover using a 2D chemiotaxis scenario, in which the agent must reach the source of a chemical signal. The analyses carried out in this work show the high degree of robustness of the neuro-controller versus uncertainties, noise, errors, or unpredicted situations. Moreover an analysis of the topology of the network has been realized in order to find the reasons of the good performances of the proposed methodology: it is possible to prove that different individuals share the same topology, i.e. the evolutionary process looks for the same feedback paths more than for the optimal set of parameters.</abstract><pub>IEEE</pub><doi>10.1109/AIM.2007.4412557</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-6247
ispartof 2007 IEEE/ASME international conference on advanced intelligent mechatronics, 2007, p.1-6
issn 2159-6247
2159-6255
language eng
recordid cdi_ieee_primary_4412557
source IEEE Electronic Library (IEL) Conference Proceedings
subjects biomimicry
Control systems
evolutionary algorithms
Evolutionary computation
Navigation
Network topology
neural controller
Neural networks
Neurons
Recurrent neural networks
Robust control
Robustness
Uncertainty
title Embodied and evolved dynamical neural networks for robust planetary navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Embodied%20and%20evolved%20dynamical%20neural%20networks%20for%20robust%20planetary%20navigation&rft.btitle=2007%20IEEE/ASME%20international%20conference%20on%20advanced%20intelligent%20mechatronics&rft.au=Cortesi,%20M.&rft.date=2007-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2159-6247&rft.eissn=2159-6255&rft.isbn=1424412633&rft.isbn_list=9781424412631&rft_id=info:doi/10.1109/AIM.2007.4412557&rft_dat=%3Cieee_6IE%3E4412557%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424412648&rft.eisbn_list=1424412641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4412557&rfr_iscdi=true