Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues

We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badrinarayanan, V., Perez, P., Le Clerc, F., Oisel, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Badrinarayanan, V.
Perez, P.
Le Clerc, F.
Oisel, L.
description We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.
doi_str_mv 10.1109/ICCV.2007.4408955
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4408955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4408955</ieee_id><sourcerecordid>4408955</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1335-5192f94995a1363cf2046ea5fc579aa177eb5b22b1897e03582de990234e01dd3</originalsourceid><addsrcrecordid>eNpFkNtKw0AURccb2FY_QHyZH0g9c0syjzVaLVQsWH0tJ8lJO5omMpla8vcWLPi0YS_YLDZjNwLGQoC9m2XZx1gCJGOtIbXGnLCh0FJrESsBp2wgVQpRYkCf_QOQ52wgjIHIaGsv2bDrPgGUlWk8YOuFb3PMXe264AqetXXrOTYln5T4HdwP8ZddHVw0JQw7T3zpsfhyzZrvXdjwh77BrSuwrnv-dmiKDZV84V3rXej5PYU9UcOzHXVX7KLCuqPrY47Y-_RxmT1H89enWTaZR04oZSIjrKzsQdOgULEqKgk6JjRVYRKLKJKEcpNLmYvUJgTKpLIka0EqTSDKUo3Y7d-uI6LVt3db9P3q-Jb6BRU4WkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Badrinarayanan, V. ; Perez, P. ; Le Clerc, F. ; Oisel, L.</creator><creatorcontrib>Badrinarayanan, V. ; Perez, P. ; Le Clerc, F. ; Oisel, L.</creatorcontrib><description>We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 1424416302</identifier><identifier>ISBN: 9781424416301</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424416310</identifier><identifier>EISBN: 9781424416318</identifier><identifier>DOI: 10.1109/ICCV.2007.4408955</identifier><language>eng</language><publisher>IEEE</publisher><subject>Filtering ; Particle filters ; Particle tracking ; Research and development ; Sampling methods ; State estimation ; State-space methods ; Target tracking ; Testing ; Vehicle dynamics</subject><ispartof>2007 IEEE 11th International Conference on Computer Vision, 2007, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4408955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4408955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badrinarayanan, V.</creatorcontrib><creatorcontrib>Perez, P.</creatorcontrib><creatorcontrib>Le Clerc, F.</creatorcontrib><creatorcontrib>Oisel, L.</creatorcontrib><title>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</title><title>2007 IEEE 11th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.</description><subject>Filtering</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>Research and development</subject><subject>Sampling methods</subject><subject>State estimation</subject><subject>State-space methods</subject><subject>Target tracking</subject><subject>Testing</subject><subject>Vehicle dynamics</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>1424416302</isbn><isbn>9781424416301</isbn><isbn>1424416310</isbn><isbn>9781424416318</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkNtKw0AURccb2FY_QHyZH0g9c0syjzVaLVQsWH0tJ8lJO5omMpla8vcWLPi0YS_YLDZjNwLGQoC9m2XZx1gCJGOtIbXGnLCh0FJrESsBp2wgVQpRYkCf_QOQ52wgjIHIaGsv2bDrPgGUlWk8YOuFb3PMXe264AqetXXrOTYln5T4HdwP8ZddHVw0JQw7T3zpsfhyzZrvXdjwh77BrSuwrnv-dmiKDZV84V3rXej5PYU9UcOzHXVX7KLCuqPrY47Y-_RxmT1H89enWTaZR04oZSIjrKzsQdOgULEqKgk6JjRVYRKLKJKEcpNLmYvUJgTKpLIka0EqTSDKUo3Y7d-uI6LVt3db9P3q-Jb6BRU4WkA</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Badrinarayanan, V.</creator><creator>Perez, P.</creator><creator>Le Clerc, F.</creator><creator>Oisel, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</title><author>Badrinarayanan, V. ; Perez, P. ; Le Clerc, F. ; Oisel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1335-5192f94995a1363cf2046ea5fc579aa177eb5b22b1897e03582de990234e01dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Filtering</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>Research and development</topic><topic>Sampling methods</topic><topic>State estimation</topic><topic>State-space methods</topic><topic>Target tracking</topic><topic>Testing</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Badrinarayanan, V.</creatorcontrib><creatorcontrib>Perez, P.</creatorcontrib><creatorcontrib>Le Clerc, F.</creatorcontrib><creatorcontrib>Oisel, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badrinarayanan, V.</au><au>Perez, P.</au><au>Le Clerc, F.</au><au>Oisel, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</atitle><btitle>2007 IEEE 11th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2007-10</date><risdate>2007</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>1424416302</isbn><isbn>9781424416301</isbn><eisbn>1424416310</eisbn><eisbn>9781424416318</eisbn><abstract>We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2007.4408955</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2007 IEEE 11th International Conference on Computer Vision, 2007, p.1-8
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_4408955
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Filtering
Particle filters
Particle tracking
Research and development
Sampling methods
State estimation
State-space methods
Target tracking
Testing
Vehicle dynamics
title Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Color%20and%20Adaptive%20Multi-Feature%20Tracking%20with%20Dynamically%20Switched%20Priority%20Between%20Cues&rft.btitle=2007%20IEEE%2011th%20International%20Conference%20on%20Computer%20Vision&rft.au=Badrinarayanan,%20V.&rft.date=2007-10&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=1424416302&rft.isbn_list=9781424416301&rft_id=info:doi/10.1109/ICCV.2007.4408955&rft_dat=%3Cieee_6IE%3E4408955%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416310&rft.eisbn_list=9781424416318&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4408955&rfr_iscdi=true