Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues
We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the tw...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Badrinarayanan, V. Perez, P. Le Clerc, F. Oisel, L. |
description | We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons. |
doi_str_mv | 10.1109/ICCV.2007.4408955 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4408955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4408955</ieee_id><sourcerecordid>4408955</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1335-5192f94995a1363cf2046ea5fc579aa177eb5b22b1897e03582de990234e01dd3</originalsourceid><addsrcrecordid>eNpFkNtKw0AURccb2FY_QHyZH0g9c0syjzVaLVQsWH0tJ8lJO5omMpla8vcWLPi0YS_YLDZjNwLGQoC9m2XZx1gCJGOtIbXGnLCh0FJrESsBp2wgVQpRYkCf_QOQ52wgjIHIaGsv2bDrPgGUlWk8YOuFb3PMXe264AqetXXrOTYln5T4HdwP8ZddHVw0JQw7T3zpsfhyzZrvXdjwh77BrSuwrnv-dmiKDZV84V3rXej5PYU9UcOzHXVX7KLCuqPrY47Y-_RxmT1H89enWTaZR04oZSIjrKzsQdOgULEqKgk6JjRVYRKLKJKEcpNLmYvUJgTKpLIka0EqTSDKUo3Y7d-uI6LVt3db9P3q-Jb6BRU4WkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Badrinarayanan, V. ; Perez, P. ; Le Clerc, F. ; Oisel, L.</creator><creatorcontrib>Badrinarayanan, V. ; Perez, P. ; Le Clerc, F. ; Oisel, L.</creatorcontrib><description>We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 1424416302</identifier><identifier>ISBN: 9781424416301</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424416310</identifier><identifier>EISBN: 9781424416318</identifier><identifier>DOI: 10.1109/ICCV.2007.4408955</identifier><language>eng</language><publisher>IEEE</publisher><subject>Filtering ; Particle filters ; Particle tracking ; Research and development ; Sampling methods ; State estimation ; State-space methods ; Target tracking ; Testing ; Vehicle dynamics</subject><ispartof>2007 IEEE 11th International Conference on Computer Vision, 2007, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4408955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4408955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badrinarayanan, V.</creatorcontrib><creatorcontrib>Perez, P.</creatorcontrib><creatorcontrib>Le Clerc, F.</creatorcontrib><creatorcontrib>Oisel, L.</creatorcontrib><title>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</title><title>2007 IEEE 11th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.</description><subject>Filtering</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>Research and development</subject><subject>Sampling methods</subject><subject>State estimation</subject><subject>State-space methods</subject><subject>Target tracking</subject><subject>Testing</subject><subject>Vehicle dynamics</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>1424416302</isbn><isbn>9781424416301</isbn><isbn>1424416310</isbn><isbn>9781424416318</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkNtKw0AURccb2FY_QHyZH0g9c0syjzVaLVQsWH0tJ8lJO5omMpla8vcWLPi0YS_YLDZjNwLGQoC9m2XZx1gCJGOtIbXGnLCh0FJrESsBp2wgVQpRYkCf_QOQ52wgjIHIaGsv2bDrPgGUlWk8YOuFb3PMXe264AqetXXrOTYln5T4HdwP8ZddHVw0JQw7T3zpsfhyzZrvXdjwh77BrSuwrnv-dmiKDZV84V3rXej5PYU9UcOzHXVX7KLCuqPrY47Y-_RxmT1H89enWTaZR04oZSIjrKzsQdOgULEqKgk6JjRVYRKLKJKEcpNLmYvUJgTKpLIka0EqTSDKUo3Y7d-uI6LVt3db9P3q-Jb6BRU4WkA</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Badrinarayanan, V.</creator><creator>Perez, P.</creator><creator>Le Clerc, F.</creator><creator>Oisel, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</title><author>Badrinarayanan, V. ; Perez, P. ; Le Clerc, F. ; Oisel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1335-5192f94995a1363cf2046ea5fc579aa177eb5b22b1897e03582de990234e01dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Filtering</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>Research and development</topic><topic>Sampling methods</topic><topic>State estimation</topic><topic>State-space methods</topic><topic>Target tracking</topic><topic>Testing</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Badrinarayanan, V.</creatorcontrib><creatorcontrib>Perez, P.</creatorcontrib><creatorcontrib>Le Clerc, F.</creatorcontrib><creatorcontrib>Oisel, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badrinarayanan, V.</au><au>Perez, P.</au><au>Le Clerc, F.</au><au>Oisel, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues</atitle><btitle>2007 IEEE 11th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2007-10</date><risdate>2007</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>1424416302</isbn><isbn>9781424416301</isbn><eisbn>1424416310</eisbn><eisbn>9781424416318</eisbn><abstract>We present a probabilistic multi-cue tracking approach constructed by employing a novel randomized template tracker and a constant color model based particle filter. Our approach is based on deriving simple binary confidence measures for each tracker which aid priority based switching between the two fundamental cues for state estimation. Thereby the state of the object is estimated from one of the two distributions associated to the cues at each tracking step. This switching also brings about interaction between the cues at irregular intervals in the form of cross sampling. Within this scheme, we tackle the important aspect of dynamic target model adaptation under randomized template tracking which, by construction, possesses the ability to adapt to changing object appearances. Further, to track the object through occlusions we interrupt sequential resampling and achieve relock using the color cue. In order to evaluate the efficacy of this scheme, we put it to test against several state of art trackers using the VIVID online evaluation program and make quantitative comparisons.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2007.4408955</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2007 IEEE 11th International Conference on Computer Vision, 2007, p.1-8 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_4408955 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Filtering Particle filters Particle tracking Research and development Sampling methods State estimation State-space methods Target tracking Testing Vehicle dynamics |
title | Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Color%20and%20Adaptive%20Multi-Feature%20Tracking%20with%20Dynamically%20Switched%20Priority%20Between%20Cues&rft.btitle=2007%20IEEE%2011th%20International%20Conference%20on%20Computer%20Vision&rft.au=Badrinarayanan,%20V.&rft.date=2007-10&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=1424416302&rft.isbn_list=9781424416301&rft_id=info:doi/10.1109/ICCV.2007.4408955&rft_dat=%3Cieee_6IE%3E4408955%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416310&rft.eisbn_list=9781424416318&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4408955&rfr_iscdi=true |