Process Variation Tolerant 3T1D-Based Cache Architectures
Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we pro...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | |
container_volume | |
creator | Xiaoyao Liang Canal, R. Gu-Yeon Wei Brooks, D. |
description | Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors. |
doi_str_mv | 10.1109/MICRO.2007.40 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4408242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4408242</ieee_id><sourcerecordid>4408242</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-948629ed0c0f9d01c8cb83d36cb3265d4b994dbdbc698c3add002435d84562e93</originalsourceid><addsrcrecordid>eNotzLFOwzAQgGEjQKIpjEwseYGUO_vs2GMJBSoVFaGA2CrHvqpBpUF2GHh7kGD6h0_6hbhEmCGCu35cNs_rmQSoZwRHokCSRKgR345FAbVxWgHV9kRMEGpZEWk8E0XO7wBgf3Ui3FMaAudcvvrU-7EfDmU77Dn5w1iqFm-rG585lo0POy7nKez6kcP4lTifi9Ot32e--O9UvNwt2uahWq3vl818VfVY67FyZI10HCHA1kXAYENnVVQmdEoaHalzjmIXu2CcDcrHCCBJ6WhJG8lOTcXV37dn5s1n6j98-t4QgZUk1Q_qpkbo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Process Variation Tolerant 3T1D-Based Cache Architectures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoyao Liang ; Canal, R. ; Gu-Yeon Wei ; Brooks, D.</creator><creatorcontrib>Xiaoyao Liang ; Canal, R. ; Gu-Yeon Wei ; Brooks, D.</creatorcontrib><description>Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.</description><identifier>ISSN: 1072-4451</identifier><identifier>ISBN: 0769530478</identifier><identifier>ISBN: 9780769530475</identifier><identifier>EISBN: 142441511X</identifier><identifier>EISBN: 9781424415113</identifier><identifier>DOI: 10.1109/MICRO.2007.40</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit stability ; Computer architecture ; Memory architecture ; Microarchitecture ; Microprocessors ; Process design ; Random access memory ; Robust stability ; Robustness ; Space technology</subject><ispartof>40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), 2007, p.15-26</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4408242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4408242$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoyao Liang</creatorcontrib><creatorcontrib>Canal, R.</creatorcontrib><creatorcontrib>Gu-Yeon Wei</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><title>Process Variation Tolerant 3T1D-Based Cache Architectures</title><title>40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007)</title><addtitle>MICRO</addtitle><description>Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.</description><subject>Circuit stability</subject><subject>Computer architecture</subject><subject>Memory architecture</subject><subject>Microarchitecture</subject><subject>Microprocessors</subject><subject>Process design</subject><subject>Random access memory</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Space technology</subject><issn>1072-4451</issn><isbn>0769530478</isbn><isbn>9780769530475</isbn><isbn>142441511X</isbn><isbn>9781424415113</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLFOwzAQgGEjQKIpjEwseYGUO_vs2GMJBSoVFaGA2CrHvqpBpUF2GHh7kGD6h0_6hbhEmCGCu35cNs_rmQSoZwRHokCSRKgR345FAbVxWgHV9kRMEGpZEWk8E0XO7wBgf3Ui3FMaAudcvvrU-7EfDmU77Dn5w1iqFm-rG585lo0POy7nKez6kcP4lTifi9Ot32e--O9UvNwt2uahWq3vl818VfVY67FyZI10HCHA1kXAYENnVVQmdEoaHalzjmIXu2CcDcrHCCBJ6WhJG8lOTcXV37dn5s1n6j98-t4QgZUk1Q_qpkbo</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Xiaoyao Liang</creator><creator>Canal, R.</creator><creator>Gu-Yeon Wei</creator><creator>Brooks, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Process Variation Tolerant 3T1D-Based Cache Architectures</title><author>Xiaoyao Liang ; Canal, R. ; Gu-Yeon Wei ; Brooks, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-948629ed0c0f9d01c8cb83d36cb3265d4b994dbdbc698c3add002435d84562e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Circuit stability</topic><topic>Computer architecture</topic><topic>Memory architecture</topic><topic>Microarchitecture</topic><topic>Microprocessors</topic><topic>Process design</topic><topic>Random access memory</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Space technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyao Liang</creatorcontrib><creatorcontrib>Canal, R.</creatorcontrib><creatorcontrib>Gu-Yeon Wei</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoyao Liang</au><au>Canal, R.</au><au>Gu-Yeon Wei</au><au>Brooks, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Process Variation Tolerant 3T1D-Based Cache Architectures</atitle><btitle>40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007)</btitle><stitle>MICRO</stitle><date>2007-12</date><risdate>2007</risdate><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>1072-4451</issn><isbn>0769530478</isbn><isbn>9780769530475</isbn><eisbn>142441511X</eisbn><eisbn>9781424415113</eisbn><abstract>Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.</abstract><pub>IEEE</pub><doi>10.1109/MICRO.2007.40</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1072-4451 |
ispartof | 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), 2007, p.15-26 |
issn | 1072-4451 |
language | eng |
recordid | cdi_ieee_primary_4408242 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Circuit stability Computer architecture Memory architecture Microarchitecture Microprocessors Process design Random access memory Robust stability Robustness Space technology |
title | Process Variation Tolerant 3T1D-Based Cache Architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Process%20Variation%20Tolerant%203T1D-Based%20Cache%20Architectures&rft.btitle=40th%20Annual%20IEEE/ACM%20International%20Symposium%20on%20Microarchitecture%20(MICRO%202007)&rft.au=Xiaoyao%20Liang&rft.date=2007-12&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=1072-4451&rft.isbn=0769530478&rft.isbn_list=9780769530475&rft_id=info:doi/10.1109/MICRO.2007.40&rft_dat=%3Cieee_6IE%3E4408242%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441511X&rft.eisbn_list=9781424415113&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4408242&rfr_iscdi=true |