Process Variation Tolerant 3T1D-Based Cache Architectures

Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaoyao Liang, Canal, R., Gu-Yeon Wei, Brooks, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 15
container_title
container_volume
creator Xiaoyao Liang
Canal, R.
Gu-Yeon Wei
Brooks, D.
description Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.
doi_str_mv 10.1109/MICRO.2007.40
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4408242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4408242</ieee_id><sourcerecordid>4408242</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-948629ed0c0f9d01c8cb83d36cb3265d4b994dbdbc698c3add002435d84562e93</originalsourceid><addsrcrecordid>eNotzLFOwzAQgGEjQKIpjEwseYGUO_vs2GMJBSoVFaGA2CrHvqpBpUF2GHh7kGD6h0_6hbhEmCGCu35cNs_rmQSoZwRHokCSRKgR345FAbVxWgHV9kRMEGpZEWk8E0XO7wBgf3Ui3FMaAudcvvrU-7EfDmU77Dn5w1iqFm-rG585lo0POy7nKez6kcP4lTifi9Ot32e--O9UvNwt2uahWq3vl818VfVY67FyZI10HCHA1kXAYENnVVQmdEoaHalzjmIXu2CcDcrHCCBJ6WhJG8lOTcXV37dn5s1n6j98-t4QgZUk1Q_qpkbo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Process Variation Tolerant 3T1D-Based Cache Architectures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoyao Liang ; Canal, R. ; Gu-Yeon Wei ; Brooks, D.</creator><creatorcontrib>Xiaoyao Liang ; Canal, R. ; Gu-Yeon Wei ; Brooks, D.</creatorcontrib><description>Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.</description><identifier>ISSN: 1072-4451</identifier><identifier>ISBN: 0769530478</identifier><identifier>ISBN: 9780769530475</identifier><identifier>EISBN: 142441511X</identifier><identifier>EISBN: 9781424415113</identifier><identifier>DOI: 10.1109/MICRO.2007.40</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit stability ; Computer architecture ; Memory architecture ; Microarchitecture ; Microprocessors ; Process design ; Random access memory ; Robust stability ; Robustness ; Space technology</subject><ispartof>40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), 2007, p.15-26</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4408242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4408242$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoyao Liang</creatorcontrib><creatorcontrib>Canal, R.</creatorcontrib><creatorcontrib>Gu-Yeon Wei</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><title>Process Variation Tolerant 3T1D-Based Cache Architectures</title><title>40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007)</title><addtitle>MICRO</addtitle><description>Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.</description><subject>Circuit stability</subject><subject>Computer architecture</subject><subject>Memory architecture</subject><subject>Microarchitecture</subject><subject>Microprocessors</subject><subject>Process design</subject><subject>Random access memory</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Space technology</subject><issn>1072-4451</issn><isbn>0769530478</isbn><isbn>9780769530475</isbn><isbn>142441511X</isbn><isbn>9781424415113</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLFOwzAQgGEjQKIpjEwseYGUO_vs2GMJBSoVFaGA2CrHvqpBpUF2GHh7kGD6h0_6hbhEmCGCu35cNs_rmQSoZwRHokCSRKgR345FAbVxWgHV9kRMEGpZEWk8E0XO7wBgf3Ui3FMaAudcvvrU-7EfDmU77Dn5w1iqFm-rG585lo0POy7nKez6kcP4lTifi9Ot32e--O9UvNwt2uahWq3vl818VfVY67FyZI10HCHA1kXAYENnVVQmdEoaHalzjmIXu2CcDcrHCCBJ6WhJG8lOTcXV37dn5s1n6j98-t4QgZUk1Q_qpkbo</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Xiaoyao Liang</creator><creator>Canal, R.</creator><creator>Gu-Yeon Wei</creator><creator>Brooks, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Process Variation Tolerant 3T1D-Based Cache Architectures</title><author>Xiaoyao Liang ; Canal, R. ; Gu-Yeon Wei ; Brooks, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-948629ed0c0f9d01c8cb83d36cb3265d4b994dbdbc698c3add002435d84562e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Circuit stability</topic><topic>Computer architecture</topic><topic>Memory architecture</topic><topic>Microarchitecture</topic><topic>Microprocessors</topic><topic>Process design</topic><topic>Random access memory</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Space technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyao Liang</creatorcontrib><creatorcontrib>Canal, R.</creatorcontrib><creatorcontrib>Gu-Yeon Wei</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoyao Liang</au><au>Canal, R.</au><au>Gu-Yeon Wei</au><au>Brooks, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Process Variation Tolerant 3T1D-Based Cache Architectures</atitle><btitle>40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007)</btitle><stitle>MICRO</stitle><date>2007-12</date><risdate>2007</risdate><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>1072-4451</issn><isbn>0769530478</isbn><isbn>9780769530475</isbn><eisbn>142441511X</eisbn><eisbn>9781424415113</eisbn><abstract>Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D DRAM (3-transistor, 1-diode dynamic memory) cells. We provide a detailed comparison between 6T and 3T1D designs in the context of a L1 data cache. The effects of physical device variation on a 3T1D cache can be lumped into variation of data retention times. This paper proposes a range of cache refresh and placement schemes that are sensitive to retention time, and we show that most of the retention time variations can be masked by the microarchitecture when using these schemes. We have performed detailed circuit and architectural simulations assuming different degrees of variability in advanced technology nodes, and we show that the resulting memory architecture can tolerate large process variations with little or even no impact on performance when compared to ideal 6T SRAM designs. Furthermore, these designs are robust to memory cell stability issues and can achieve large power savings. These advantages make the new memory architectures a promising choice for on-chip variation-tolerant cache structures required for next generation microprocessors.</abstract><pub>IEEE</pub><doi>10.1109/MICRO.2007.40</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1072-4451
ispartof 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), 2007, p.15-26
issn 1072-4451
language eng
recordid cdi_ieee_primary_4408242
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuit stability
Computer architecture
Memory architecture
Microarchitecture
Microprocessors
Process design
Random access memory
Robust stability
Robustness
Space technology
title Process Variation Tolerant 3T1D-Based Cache Architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Process%20Variation%20Tolerant%203T1D-Based%20Cache%20Architectures&rft.btitle=40th%20Annual%20IEEE/ACM%20International%20Symposium%20on%20Microarchitecture%20(MICRO%202007)&rft.au=Xiaoyao%20Liang&rft.date=2007-12&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=1072-4451&rft.isbn=0769530478&rft.isbn_list=9780769530475&rft_id=info:doi/10.1109/MICRO.2007.40&rft_dat=%3Cieee_6IE%3E4408242%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441511X&rft.eisbn_list=9781424415113&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4408242&rfr_iscdi=true