Identifying Optimal Jobs to Work On: The Role of Attitude in Job Selection
In this paper, the meaning of attitude and its role in an agent's job selection behavior is discussed. When agents build teams, a critical step in improving performance is choosing which jobs to work on in the context of both changing environmental conditions and other agents' uncertain be...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | |
container_start_page | 356 |
container_title | |
container_volume | |
creator | Jaesuk Ahn Jones, C.L.D. Barber, K.S. |
description | In this paper, the meaning of attitude and its role in an agent's job selection behavior is discussed. When agents build teams, a critical step in improving performance is choosing which jobs to work on in the context of both changing environmental conditions and other agents' uncertain behaviors. This research introduces a decision theoretic model and the concept of attitude, and provides methods to incorporate different possible attitudes in constructing an expected utility function to guide agents in ranking potential jobs. In this way, attitudes define how an agent prioritizes different possible job choices. Three types of attitudes are defined: attitudes toward proactive behavior, potential risk, and reward. The paper shows that agents using the presented model are able to increase their payoff by identifying optimal jobs under different environmental conditions with varied parameters. |
doi_str_mv | 10.1109/IAT.2007.76 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4407310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407310</ieee_id><sourcerecordid>4407310</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ef39bfb43af9baf8564f6214a5a8d4be4cabe495dfcc5140737796a229e36bcd3</originalsourceid><addsrcrecordid>eNotjj1PwzAURS0hJKB0YmR5fyDBjr9qtqgCmqpSJAhirOzkGQwhrhIz9N-TCu5w7nJ0dQm5YTRnjJq7qmzyglKda3VGrqhWRnJaaH5BltP0SedwIwVll2RbdTik4I9heIf6kMK37WEb3QQpwlscv6Ae7qH5QHiOPUL0UKYU0k-HEIaTCC_YY5tCHK7Jubf9hMv_XpDXx4dmvcl29VO1LndZYFqmDD03zjvBrTfO-pVUwquCCSvtqhMORWtnGNn5tpVMUM21NsoWhUGuXNvxBbn92w2IuD-M8-XxuBcnk1H-C0EeSXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying Optimal Jobs to Work On: The Role of Attitude in Job Selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaesuk Ahn ; Jones, C.L.D. ; Barber, K.S.</creator><creatorcontrib>Jaesuk Ahn ; Jones, C.L.D. ; Barber, K.S.</creatorcontrib><description>In this paper, the meaning of attitude and its role in an agent's job selection behavior is discussed. When agents build teams, a critical step in improving performance is choosing which jobs to work on in the context of both changing environmental conditions and other agents' uncertain behaviors. This research introduces a decision theoretic model and the concept of attitude, and provides methods to incorporate different possible attitudes in constructing an expected utility function to guide agents in ranking potential jobs. In this way, attitudes define how an agent prioritizes different possible job choices. Three types of attitudes are defined: attitudes toward proactive behavior, potential risk, and reward. The paper shows that agents using the presented model are able to increase their payoff by identifying optimal jobs under different environmental conditions with varied parameters.</description><identifier>ISBN: 0769530273</identifier><identifier>ISBN: 9780769530277</identifier><identifier>DOI: 10.1109/IAT.2007.76</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decision making ; Equations ; Intelligent agent ; Intelligent systems ; IP networks ; Laboratories ; Mobile agents ; Multiagent systems ; USA Councils ; Utility theory</subject><ispartof>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07), 2007, p.356-362</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4407310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaesuk Ahn</creatorcontrib><creatorcontrib>Jones, C.L.D.</creatorcontrib><creatorcontrib>Barber, K.S.</creatorcontrib><title>Identifying Optimal Jobs to Work On: The Role of Attitude in Job Selection</title><title>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07)</title><addtitle>IAT</addtitle><description>In this paper, the meaning of attitude and its role in an agent's job selection behavior is discussed. When agents build teams, a critical step in improving performance is choosing which jobs to work on in the context of both changing environmental conditions and other agents' uncertain behaviors. This research introduces a decision theoretic model and the concept of attitude, and provides methods to incorporate different possible attitudes in constructing an expected utility function to guide agents in ranking potential jobs. In this way, attitudes define how an agent prioritizes different possible job choices. Three types of attitudes are defined: attitudes toward proactive behavior, potential risk, and reward. The paper shows that agents using the presented model are able to increase their payoff by identifying optimal jobs under different environmental conditions with varied parameters.</description><subject>Decision making</subject><subject>Equations</subject><subject>Intelligent agent</subject><subject>Intelligent systems</subject><subject>IP networks</subject><subject>Laboratories</subject><subject>Mobile agents</subject><subject>Multiagent systems</subject><subject>USA Councils</subject><subject>Utility theory</subject><isbn>0769530273</isbn><isbn>9780769530277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAURS0hJKB0YmR5fyDBjr9qtqgCmqpSJAhirOzkGQwhrhIz9N-TCu5w7nJ0dQm5YTRnjJq7qmzyglKda3VGrqhWRnJaaH5BltP0SedwIwVll2RbdTik4I9heIf6kMK37WEb3QQpwlscv6Ae7qH5QHiOPUL0UKYU0k-HEIaTCC_YY5tCHK7Jubf9hMv_XpDXx4dmvcl29VO1LndZYFqmDD03zjvBrTfO-pVUwquCCSvtqhMORWtnGNn5tpVMUM21NsoWhUGuXNvxBbn92w2IuD-M8-XxuBcnk1H-C0EeSXA</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Jaesuk Ahn</creator><creator>Jones, C.L.D.</creator><creator>Barber, K.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>Identifying Optimal Jobs to Work On: The Role of Attitude in Job Selection</title><author>Jaesuk Ahn ; Jones, C.L.D. ; Barber, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ef39bfb43af9baf8564f6214a5a8d4be4cabe495dfcc5140737796a229e36bcd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Decision making</topic><topic>Equations</topic><topic>Intelligent agent</topic><topic>Intelligent systems</topic><topic>IP networks</topic><topic>Laboratories</topic><topic>Mobile agents</topic><topic>Multiagent systems</topic><topic>USA Councils</topic><topic>Utility theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaesuk Ahn</creatorcontrib><creatorcontrib>Jones, C.L.D.</creatorcontrib><creatorcontrib>Barber, K.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaesuk Ahn</au><au>Jones, C.L.D.</au><au>Barber, K.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying Optimal Jobs to Work On: The Role of Attitude in Job Selection</atitle><btitle>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07)</btitle><stitle>IAT</stitle><date>2007-11</date><risdate>2007</risdate><spage>356</spage><epage>362</epage><pages>356-362</pages><isbn>0769530273</isbn><isbn>9780769530277</isbn><abstract>In this paper, the meaning of attitude and its role in an agent's job selection behavior is discussed. When agents build teams, a critical step in improving performance is choosing which jobs to work on in the context of both changing environmental conditions and other agents' uncertain behaviors. This research introduces a decision theoretic model and the concept of attitude, and provides methods to incorporate different possible attitudes in constructing an expected utility function to guide agents in ranking potential jobs. In this way, attitudes define how an agent prioritizes different possible job choices. Three types of attitudes are defined: attitudes toward proactive behavior, potential risk, and reward. The paper shows that agents using the presented model are able to increase their payoff by identifying optimal jobs under different environmental conditions with varied parameters.</abstract><pub>IEEE</pub><doi>10.1109/IAT.2007.76</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769530273 |
ispartof | 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07), 2007, p.356-362 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4407310 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Decision making Equations Intelligent agent Intelligent systems IP networks Laboratories Mobile agents Multiagent systems USA Councils Utility theory |
title | Identifying Optimal Jobs to Work On: The Role of Attitude in Job Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20Optimal%20Jobs%20to%20Work%20On:%20The%20Role%20of%20Attitude%20in%20Job%20Selection&rft.btitle=2007%20IEEE/WIC/ACM%20International%20Conference%20on%20Intelligent%20Agent%20Technology%20(IAT'07)&rft.au=Jaesuk%20Ahn&rft.date=2007-11&rft.spage=356&rft.epage=362&rft.pages=356-362&rft.isbn=0769530273&rft.isbn_list=9780769530277&rft_id=info:doi/10.1109/IAT.2007.76&rft_dat=%3Cieee_6IE%3E4407310%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4407310&rfr_iscdi=true |