NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis

Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jie Cheng, Xiaobo Zhou, Sabatini, B.L., Wong, S.T.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 168
container_title
container_volume
creator Jie Cheng
Xiaobo Zhou
Sabatini, B.L.
Wong, S.T.C.
description Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.
doi_str_mv 10.1109/LSSA.2007.4400911
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4400911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4400911</ieee_id><sourcerecordid>4400911</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-80206b96ac98bdd1041254075dde58cc1444a33256def43dffbf9482c07203443</originalsourceid><addsrcrecordid>eNo1UG1LwzAYjIigzv4A8Uv-wOrzJE_bxG9j-DIoikw_ysiSFCNdU5pO2L-34jw4juO4-3CMXSPkiKBv6_V6kQuAKicC0IgnLNOVQhJEqFCqU3b5b0R1zrKUvmCC1EWJdME-nv1-iN3q9Y4veBe_fctt3PX70Ywhdqblpu-HaOwnb-LAzX6Muymx3PnODWH0PPWh82nyo7e_FW46N9G0hxTSFTtrTJt8dtQZe3-4f1s-zeuXx9VyUc8DVsU4VyCg3OrSWK22ziEQioKgKpzzhbIWichIKYrS-Yaka5pto0kJC5UASSRn7OZvN3jvN_0QdmY4bI6PyB9Z7FTa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jie Cheng ; Xiaobo Zhou ; Sabatini, B.L. ; Wong, S.T.C.</creator><creatorcontrib>Jie Cheng ; Xiaobo Zhou ; Sabatini, B.L. ; Wong, S.T.C.</creatorcontrib><description>Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.</description><identifier>ISBN: 1424418127</identifier><identifier>ISBN: 9781424418121</identifier><identifier>EISBN: 9781424418138</identifier><identifier>EISBN: 1424418135</identifier><identifier>DOI: 10.1109/LSSA.2007.4400911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Conferences ; Data processing ; Image analysis ; Morphology ; Neurons ; Pipelines</subject><ispartof>2007 IEEE/NIH Life Science Systems and Applications Workshop, 2007, p.168-171</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4400911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4400911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Cheng</creatorcontrib><creatorcontrib>Xiaobo Zhou</creatorcontrib><creatorcontrib>Sabatini, B.L.</creatorcontrib><creatorcontrib>Wong, S.T.C.</creatorcontrib><title>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</title><title>2007 IEEE/NIH Life Science Systems and Applications Workshop</title><addtitle>LSSA</addtitle><description>Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.</description><subject>Automation</subject><subject>Conferences</subject><subject>Data processing</subject><subject>Image analysis</subject><subject>Morphology</subject><subject>Neurons</subject><subject>Pipelines</subject><isbn>1424418127</isbn><isbn>9781424418121</isbn><isbn>9781424418138</isbn><isbn>1424418135</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UG1LwzAYjIigzv4A8Uv-wOrzJE_bxG9j-DIoikw_ysiSFCNdU5pO2L-34jw4juO4-3CMXSPkiKBv6_V6kQuAKicC0IgnLNOVQhJEqFCqU3b5b0R1zrKUvmCC1EWJdME-nv1-iN3q9Y4veBe_fctt3PX70Ywhdqblpu-HaOwnb-LAzX6Muymx3PnODWH0PPWh82nyo7e_FW46N9G0hxTSFTtrTJt8dtQZe3-4f1s-zeuXx9VyUc8DVsU4VyCg3OrSWK22ziEQioKgKpzzhbIWichIKYrS-Yaka5pto0kJC5UASSRn7OZvN3jvN_0QdmY4bI6PyB9Z7FTa</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Jie Cheng</creator><creator>Xiaobo Zhou</creator><creator>Sabatini, B.L.</creator><creator>Wong, S.T.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</title><author>Jie Cheng ; Xiaobo Zhou ; Sabatini, B.L. ; Wong, S.T.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-80206b96ac98bdd1041254075dde58cc1444a33256def43dffbf9482c07203443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automation</topic><topic>Conferences</topic><topic>Data processing</topic><topic>Image analysis</topic><topic>Morphology</topic><topic>Neurons</topic><topic>Pipelines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Cheng</creatorcontrib><creatorcontrib>Xiaobo Zhou</creatorcontrib><creatorcontrib>Sabatini, B.L.</creatorcontrib><creatorcontrib>Wong, S.T.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Cheng</au><au>Xiaobo Zhou</au><au>Sabatini, B.L.</au><au>Wong, S.T.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</atitle><btitle>2007 IEEE/NIH Life Science Systems and Applications Workshop</btitle><stitle>LSSA</stitle><date>2007-11</date><risdate>2007</risdate><spage>168</spage><epage>171</epage><pages>168-171</pages><isbn>1424418127</isbn><isbn>9781424418121</isbn><eisbn>9781424418138</eisbn><eisbn>1424418135</eisbn><abstract>Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.</abstract><pub>IEEE</pub><doi>10.1109/LSSA.2007.4400911</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424418127
ispartof 2007 IEEE/NIH Life Science Systems and Applications Workshop, 2007, p.168-171
issn
language eng
recordid cdi_ieee_primary_4400911
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Conferences
Data processing
Image analysis
Morphology
Neurons
Pipelines
title NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=NeuronIQ:%20A%20novel%20computational%20approach%20for%20automatic%20dendrite%20spines%20detection%20and%20analysis&rft.btitle=2007%20IEEE/NIH%20Life%20Science%20Systems%20and%20Applications%20Workshop&rft.au=Jie%20Cheng&rft.date=2007-11&rft.spage=168&rft.epage=171&rft.pages=168-171&rft.isbn=1424418127&rft.isbn_list=9781424418121&rft_id=info:doi/10.1109/LSSA.2007.4400911&rft_dat=%3Cieee_6IE%3E4400911%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418138&rft.eisbn_list=1424418135&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4400911&rfr_iscdi=true