NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis
Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | |
container_start_page | 168 |
container_title | |
container_volume | |
creator | Jie Cheng Xiaobo Zhou Sabatini, B.L. Wong, S.T.C. |
description | Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average. |
doi_str_mv | 10.1109/LSSA.2007.4400911 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4400911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4400911</ieee_id><sourcerecordid>4400911</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-80206b96ac98bdd1041254075dde58cc1444a33256def43dffbf9482c07203443</originalsourceid><addsrcrecordid>eNo1UG1LwzAYjIigzv4A8Uv-wOrzJE_bxG9j-DIoikw_ysiSFCNdU5pO2L-34jw4juO4-3CMXSPkiKBv6_V6kQuAKicC0IgnLNOVQhJEqFCqU3b5b0R1zrKUvmCC1EWJdME-nv1-iN3q9Y4veBe_fctt3PX70Ywhdqblpu-HaOwnb-LAzX6Muymx3PnODWH0PPWh82nyo7e_FW46N9G0hxTSFTtrTJt8dtQZe3-4f1s-zeuXx9VyUc8DVsU4VyCg3OrSWK22ziEQioKgKpzzhbIWichIKYrS-Yaka5pto0kJC5UASSRn7OZvN3jvN_0QdmY4bI6PyB9Z7FTa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jie Cheng ; Xiaobo Zhou ; Sabatini, B.L. ; Wong, S.T.C.</creator><creatorcontrib>Jie Cheng ; Xiaobo Zhou ; Sabatini, B.L. ; Wong, S.T.C.</creatorcontrib><description>Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.</description><identifier>ISBN: 1424418127</identifier><identifier>ISBN: 9781424418121</identifier><identifier>EISBN: 9781424418138</identifier><identifier>EISBN: 1424418135</identifier><identifier>DOI: 10.1109/LSSA.2007.4400911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Conferences ; Data processing ; Image analysis ; Morphology ; Neurons ; Pipelines</subject><ispartof>2007 IEEE/NIH Life Science Systems and Applications Workshop, 2007, p.168-171</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4400911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4400911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Cheng</creatorcontrib><creatorcontrib>Xiaobo Zhou</creatorcontrib><creatorcontrib>Sabatini, B.L.</creatorcontrib><creatorcontrib>Wong, S.T.C.</creatorcontrib><title>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</title><title>2007 IEEE/NIH Life Science Systems and Applications Workshop</title><addtitle>LSSA</addtitle><description>Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.</description><subject>Automation</subject><subject>Conferences</subject><subject>Data processing</subject><subject>Image analysis</subject><subject>Morphology</subject><subject>Neurons</subject><subject>Pipelines</subject><isbn>1424418127</isbn><isbn>9781424418121</isbn><isbn>9781424418138</isbn><isbn>1424418135</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UG1LwzAYjIigzv4A8Uv-wOrzJE_bxG9j-DIoikw_ysiSFCNdU5pO2L-34jw4juO4-3CMXSPkiKBv6_V6kQuAKicC0IgnLNOVQhJEqFCqU3b5b0R1zrKUvmCC1EWJdME-nv1-iN3q9Y4veBe_fctt3PX70Ywhdqblpu-HaOwnb-LAzX6Muymx3PnODWH0PPWh82nyo7e_FW46N9G0hxTSFTtrTJt8dtQZe3-4f1s-zeuXx9VyUc8DVsU4VyCg3OrSWK22ziEQioKgKpzzhbIWichIKYrS-Yaka5pto0kJC5UASSRn7OZvN3jvN_0QdmY4bI6PyB9Z7FTa</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Jie Cheng</creator><creator>Xiaobo Zhou</creator><creator>Sabatini, B.L.</creator><creator>Wong, S.T.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</title><author>Jie Cheng ; Xiaobo Zhou ; Sabatini, B.L. ; Wong, S.T.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-80206b96ac98bdd1041254075dde58cc1444a33256def43dffbf9482c07203443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automation</topic><topic>Conferences</topic><topic>Data processing</topic><topic>Image analysis</topic><topic>Morphology</topic><topic>Neurons</topic><topic>Pipelines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Cheng</creatorcontrib><creatorcontrib>Xiaobo Zhou</creatorcontrib><creatorcontrib>Sabatini, B.L.</creatorcontrib><creatorcontrib>Wong, S.T.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Cheng</au><au>Xiaobo Zhou</au><au>Sabatini, B.L.</au><au>Wong, S.T.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis</atitle><btitle>2007 IEEE/NIH Life Science Systems and Applications Workshop</btitle><stitle>LSSA</stitle><date>2007-11</date><risdate>2007</risdate><spage>168</spage><epage>171</epage><pages>168-171</pages><isbn>1424418127</isbn><isbn>9781424418121</isbn><eisbn>9781424418138</eisbn><eisbn>1424418135</eisbn><abstract>Recent research has shown a strong correlation between the functional properties of a neuron and its morphologic structure. Current morphologic analyses typically involve a significant component of computer-assisted manual labor, which is very time-consuming and is susceptible to operator bias. We present a neuroinformatics system called neuron image quantitator (NeuronlQ), an integrated data processing pipeline for automatic dendrite spine detection, quantification, and analysis. The automation includes an adaptive thresholding method, a SNR based detached spine component detection method and an attached spine component detection method based on the estimation of local dendrite morphology. The morphology information obtained both manually and automatically is compared in detail. The spine detection results are also compared with other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer false positives and 77% fewer false negatives on average.</abstract><pub>IEEE</pub><doi>10.1109/LSSA.2007.4400911</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424418127 |
ispartof | 2007 IEEE/NIH Life Science Systems and Applications Workshop, 2007, p.168-171 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4400911 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automation Conferences Data processing Image analysis Morphology Neurons Pipelines |
title | NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=NeuronIQ:%20A%20novel%20computational%20approach%20for%20automatic%20dendrite%20spines%20detection%20and%20analysis&rft.btitle=2007%20IEEE/NIH%20Life%20Science%20Systems%20and%20Applications%20Workshop&rft.au=Jie%20Cheng&rft.date=2007-11&rft.spage=168&rft.epage=171&rft.pages=168-171&rft.isbn=1424418127&rft.isbn_list=9781424418121&rft_id=info:doi/10.1109/LSSA.2007.4400911&rft_dat=%3Cieee_6IE%3E4400911%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418138&rft.eisbn_list=1424418135&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4400911&rfr_iscdi=true |