A Hybrid Algorithm for Medical Diagnosis

Medical diagnosis and prognosis is an emblematic example for classification problems. Machine learning could provide invaluable support for automatically inferring diagnostic rules from descriptions of past cases, making the diagnosis process more objective and reliable. Since the problem involves b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bratu, C.V., Savin, C., Potolea, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue
container_start_page 668
container_title
container_volume
creator Bratu, C.V.
Savin, C.
Potolea, R.
description Medical diagnosis and prognosis is an emblematic example for classification problems. Machine learning could provide invaluable support for automatically inferring diagnostic rules from descriptions of past cases, making the diagnosis process more objective and reliable. Since the problem involves both test and misclassification costs, we have analyzed ICET, the most prominent approach in the literature for complex cost problems. The hybrid algorithm tries to avoid the pitfalls of traditional greedy induction by performing a heuristic search in the space of possible decision trees through evolutionary mechanisms. Our implementation solves some of the problems of the initial ICET algorithm, proving it to be a viable solution for the problem considered.
doi_str_mv 10.1109/EURCON.2007.4400571
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4400571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4400571</ieee_id><sourcerecordid>4400571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1d54b46d986c34564deefca0c07408d9b289e5bafc3adae7b64ee32271a3c48d3</originalsourceid><addsrcrecordid>eNo1j81KAzEYRSMiqHWeoJss3cz45WcmyXIYayvUFkoFdyU_39TI1JGkm769BevqcDaHewmZMqgYA_M0e99061XFAVQlJUCt2BW5Z5KfRTPxcU0Ko_S_c35Lipy_AICpRhij7shjSxcnl2Kg7bAfUzx-Hmg_JvqGIXo70Odo999jjvmB3PR2yFhcOCHbl9m2W5TL9fy1a5dlNHAsWailk00wuvFC1o0MiL234EGdFwTjuDZYO9t7YYNF5RqJKDhXzAovdRATMv3LRkTc_aR4sOm0u3wTvxCtQe8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hybrid Algorithm for Medical Diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bratu, C.V. ; Savin, C. ; Potolea, R.</creator><creatorcontrib>Bratu, C.V. ; Savin, C. ; Potolea, R.</creatorcontrib><description>Medical diagnosis and prognosis is an emblematic example for classification problems. Machine learning could provide invaluable support for automatically inferring diagnostic rules from descriptions of past cases, making the diagnosis process more objective and reliable. Since the problem involves both test and misclassification costs, we have analyzed ICET, the most prominent approach in the literature for complex cost problems. The hybrid algorithm tries to avoid the pitfalls of traditional greedy induction by performing a heuristic search in the space of possible decision trees through evolutionary mechanisms. Our implementation solves some of the problems of the initial ICET algorithm, proving it to be a viable solution for the problem considered.</description><identifier>ISBN: 9781424408122</identifier><identifier>ISBN: 1424408121</identifier><identifier>EISBN: 142440813X</identifier><identifier>EISBN: 9781424408139</identifier><identifier>DOI: 10.1109/EURCON.2007.4400571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; cost-sensitive learning ; Costs ; Decision trees ; hybrid algorithm ; Inference algorithms ; Machine learning ; Machine learning algorithms ; Medical diagnosis ; Medical treatment ; Physics computing ; Testing</subject><ispartof>EUROCON 2007 - The International Conference on "Computer as a Tool", 2007, p.668-673</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4400571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4400571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bratu, C.V.</creatorcontrib><creatorcontrib>Savin, C.</creatorcontrib><creatorcontrib>Potolea, R.</creatorcontrib><title>A Hybrid Algorithm for Medical Diagnosis</title><title>EUROCON 2007 - The International Conference on "Computer as a Tool"</title><addtitle>EURCON</addtitle><description>Medical diagnosis and prognosis is an emblematic example for classification problems. Machine learning could provide invaluable support for automatically inferring diagnostic rules from descriptions of past cases, making the diagnosis process more objective and reliable. Since the problem involves both test and misclassification costs, we have analyzed ICET, the most prominent approach in the literature for complex cost problems. The hybrid algorithm tries to avoid the pitfalls of traditional greedy induction by performing a heuristic search in the space of possible decision trees through evolutionary mechanisms. Our implementation solves some of the problems of the initial ICET algorithm, proving it to be a viable solution for the problem considered.</description><subject>Computer science</subject><subject>cost-sensitive learning</subject><subject>Costs</subject><subject>Decision trees</subject><subject>hybrid algorithm</subject><subject>Inference algorithms</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Medical diagnosis</subject><subject>Medical treatment</subject><subject>Physics computing</subject><subject>Testing</subject><isbn>9781424408122</isbn><isbn>1424408121</isbn><isbn>142440813X</isbn><isbn>9781424408139</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEYRSMiqHWeoJss3cz45WcmyXIYayvUFkoFdyU_39TI1JGkm769BevqcDaHewmZMqgYA_M0e99061XFAVQlJUCt2BW5Z5KfRTPxcU0Ko_S_c35Lipy_AICpRhij7shjSxcnl2Kg7bAfUzx-Hmg_JvqGIXo70Odo999jjvmB3PR2yFhcOCHbl9m2W5TL9fy1a5dlNHAsWailk00wuvFC1o0MiL234EGdFwTjuDZYO9t7YYNF5RqJKDhXzAovdRATMv3LRkTc_aR4sOm0u3wTvxCtQe8</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bratu, C.V.</creator><creator>Savin, C.</creator><creator>Potolea, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>A Hybrid Algorithm for Medical Diagnosis</title><author>Bratu, C.V. ; Savin, C. ; Potolea, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1d54b46d986c34564deefca0c07408d9b289e5bafc3adae7b64ee32271a3c48d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer science</topic><topic>cost-sensitive learning</topic><topic>Costs</topic><topic>Decision trees</topic><topic>hybrid algorithm</topic><topic>Inference algorithms</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Medical diagnosis</topic><topic>Medical treatment</topic><topic>Physics computing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bratu, C.V.</creatorcontrib><creatorcontrib>Savin, C.</creatorcontrib><creatorcontrib>Potolea, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bratu, C.V.</au><au>Savin, C.</au><au>Potolea, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hybrid Algorithm for Medical Diagnosis</atitle><btitle>EUROCON 2007 - The International Conference on "Computer as a Tool"</btitle><stitle>EURCON</stitle><date>2007-09</date><risdate>2007</risdate><spage>668</spage><epage>673</epage><pages>668-673</pages><isbn>9781424408122</isbn><isbn>1424408121</isbn><eisbn>142440813X</eisbn><eisbn>9781424408139</eisbn><abstract>Medical diagnosis and prognosis is an emblematic example for classification problems. Machine learning could provide invaluable support for automatically inferring diagnostic rules from descriptions of past cases, making the diagnosis process more objective and reliable. Since the problem involves both test and misclassification costs, we have analyzed ICET, the most prominent approach in the literature for complex cost problems. The hybrid algorithm tries to avoid the pitfalls of traditional greedy induction by performing a heuristic search in the space of possible decision trees through evolutionary mechanisms. Our implementation solves some of the problems of the initial ICET algorithm, proving it to be a viable solution for the problem considered.</abstract><pub>IEEE</pub><doi>10.1109/EURCON.2007.4400571</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424408122
ispartof EUROCON 2007 - The International Conference on "Computer as a Tool", 2007, p.668-673
issn
language eng
recordid cdi_ieee_primary_4400571
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
cost-sensitive learning
Costs
Decision trees
hybrid algorithm
Inference algorithms
Machine learning
Machine learning algorithms
Medical diagnosis
Medical treatment
Physics computing
Testing
title A Hybrid Algorithm for Medical Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hybrid%20Algorithm%20for%20Medical%20Diagnosis&rft.btitle=EUROCON%202007%20-%20The%20International%20Conference%20on%20%22Computer%20as%20a%20Tool%22&rft.au=Bratu,%20C.V.&rft.date=2007-09&rft.spage=668&rft.epage=673&rft.pages=668-673&rft.isbn=9781424408122&rft.isbn_list=1424408121&rft_id=info:doi/10.1109/EURCON.2007.4400571&rft_dat=%3Cieee_6IE%3E4400571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142440813X&rft.eisbn_list=9781424408139&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4400571&rfr_iscdi=true