Multi-robot SLAM with topological/metric maps

In recent years, the success of single-robot SLAM has led to more multi-robot SLAM (MR-SLAM) research. A team of robots with MR-SLAM can explore an environment more efficiently and reliably; however, MR-SLAM also raises many challenging problems, including map fusion, unknown robot poses and scalabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chang, H.J., Lee, C.S.G., Hu, Y.C., Yung-Hsiang Lu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1472
container_issue
container_start_page 1467
container_title
container_volume
creator Chang, H.J.
Lee, C.S.G.
Hu, Y.C.
Yung-Hsiang Lu
description In recent years, the success of single-robot SLAM has led to more multi-robot SLAM (MR-SLAM) research. A team of robots with MR-SLAM can explore an environment more efficiently and reliably; however, MR-SLAM also raises many challenging problems, including map fusion, unknown robot poses and scalability issues. The first two problems can be considered as an optimization problem of finding a consistent joint map based on robots' relative poses and sensory data. This optimization problem exhibits a similar property of a single- robot topological/metric mapping. To exploit this property, we propose a multi-robot SLAM (MR-SLAM) algorithm, which builds a graph-like topological map with vertices representing local metric maps and edges describing relative positions of adjacent local maps. In this MR-SLAM algorithm, the map fusion between two robots can be naturally done by adding an edge that connects two topological maps, and the estimation of relative robot pose is simply performed by optimizing this edge. For the third scalable problem, the proposed algorithm is also scalable to the number of robots and the size of an environment. Computer simulations with a public data set and experimental work on Pioneer 3-DX robots have been conducted to validate the performance of the proposed MR-SLAM algorithm.
doi_str_mv 10.1109/IROS.2007.4399142
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4399142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4399142</ieee_id><sourcerecordid>4399142</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a5cc52dd986eddc4605341db272030f6f622e5df767430226f90c6e07937b0083</originalsourceid><addsrcrecordid>eNo9kMtKw0AYRsdLwbbmAcRNXmDaf_65L0vxUkgp2O5LMjPRkYSEZER8eytWN99ZHDiLj5A7BgvGwC43L7v9AgH0QnBrmcALMjutEGAZmksyRSY5BaPUFcmsNn-O4fW_k2ZCZj8NZU9K3ZBsHN8BgGklgOGU0O1HkyIduqpL-b5YbfPPmN7y1PVd071GVzbLNqQhurwt-_GWTOqyGUN25pwcHh8O62da7J4261VBo4VES-mcRO-tUcF7JxRILpivUCNwqFWtEIP0tVZacEBUtQWnAmjLdQVg-Jzc_2ZjCOHYD7Eth6_j-QX-DUtxR9Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-robot SLAM with topological/metric maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chang, H.J. ; Lee, C.S.G. ; Hu, Y.C. ; Yung-Hsiang Lu</creator><creatorcontrib>Chang, H.J. ; Lee, C.S.G. ; Hu, Y.C. ; Yung-Hsiang Lu</creatorcontrib><description>In recent years, the success of single-robot SLAM has led to more multi-robot SLAM (MR-SLAM) research. A team of robots with MR-SLAM can explore an environment more efficiently and reliably; however, MR-SLAM also raises many challenging problems, including map fusion, unknown robot poses and scalability issues. The first two problems can be considered as an optimization problem of finding a consistent joint map based on robots' relative poses and sensory data. This optimization problem exhibits a similar property of a single- robot topological/metric mapping. To exploit this property, we propose a multi-robot SLAM (MR-SLAM) algorithm, which builds a graph-like topological map with vertices representing local metric maps and edges describing relative positions of adjacent local maps. In this MR-SLAM algorithm, the map fusion between two robots can be naturally done by adding an edge that connects two topological maps, and the estimation of relative robot pose is simply performed by optimizing this edge. For the third scalable problem, the proposed algorithm is also scalable to the number of robots and the size of an environment. Computer simulations with a public data set and experimental work on Pioneer 3-DX robots have been conducted to validate the performance of the proposed MR-SLAM algorithm.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424409112</identifier><identifier>ISBN: 142440911X</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1424409128</identifier><identifier>EISBN: 9781424409129</identifier><identifier>DOI: 10.1109/IROS.2007.4399142</identifier><identifier>LCCN: 2007694096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer simulation ; Intelligent robots ; Mobile robotics ; multi-robot systems ; Multirobot systems ; Reliability engineering ; Robot sensing systems ; Scalability ; Simultaneous localization and mapping ; USA Councils</subject><ispartof>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.1467-1472</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4399142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4399142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, H.J.</creatorcontrib><creatorcontrib>Lee, C.S.G.</creatorcontrib><creatorcontrib>Hu, Y.C.</creatorcontrib><creatorcontrib>Yung-Hsiang Lu</creatorcontrib><title>Multi-robot SLAM with topological/metric maps</title><title>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In recent years, the success of single-robot SLAM has led to more multi-robot SLAM (MR-SLAM) research. A team of robots with MR-SLAM can explore an environment more efficiently and reliably; however, MR-SLAM also raises many challenging problems, including map fusion, unknown robot poses and scalability issues. The first two problems can be considered as an optimization problem of finding a consistent joint map based on robots' relative poses and sensory data. This optimization problem exhibits a similar property of a single- robot topological/metric mapping. To exploit this property, we propose a multi-robot SLAM (MR-SLAM) algorithm, which builds a graph-like topological map with vertices representing local metric maps and edges describing relative positions of adjacent local maps. In this MR-SLAM algorithm, the map fusion between two robots can be naturally done by adding an edge that connects two topological maps, and the estimation of relative robot pose is simply performed by optimizing this edge. For the third scalable problem, the proposed algorithm is also scalable to the number of robots and the size of an environment. Computer simulations with a public data set and experimental work on Pioneer 3-DX robots have been conducted to validate the performance of the proposed MR-SLAM algorithm.</description><subject>Bayesian methods</subject><subject>Computer simulation</subject><subject>Intelligent robots</subject><subject>Mobile robotics</subject><subject>multi-robot systems</subject><subject>Multirobot systems</subject><subject>Reliability engineering</subject><subject>Robot sensing systems</subject><subject>Scalability</subject><subject>Simultaneous localization and mapping</subject><subject>USA Councils</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424409112</isbn><isbn>142440911X</isbn><isbn>1424409128</isbn><isbn>9781424409129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtKw0AYRsdLwbbmAcRNXmDaf_65L0vxUkgp2O5LMjPRkYSEZER8eytWN99ZHDiLj5A7BgvGwC43L7v9AgH0QnBrmcALMjutEGAZmksyRSY5BaPUFcmsNn-O4fW_k2ZCZj8NZU9K3ZBsHN8BgGklgOGU0O1HkyIduqpL-b5YbfPPmN7y1PVd071GVzbLNqQhurwt-_GWTOqyGUN25pwcHh8O62da7J4261VBo4VES-mcRO-tUcF7JxRILpivUCNwqFWtEIP0tVZacEBUtQWnAmjLdQVg-Jzc_2ZjCOHYD7Eth6_j-QX-DUtxR9Q</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Chang, H.J.</creator><creator>Lee, C.S.G.</creator><creator>Hu, Y.C.</creator><creator>Yung-Hsiang Lu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Multi-robot SLAM with topological/metric maps</title><author>Chang, H.J. ; Lee, C.S.G. ; Hu, Y.C. ; Yung-Hsiang Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a5cc52dd986eddc4605341db272030f6f622e5df767430226f90c6e07937b0083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Computer simulation</topic><topic>Intelligent robots</topic><topic>Mobile robotics</topic><topic>multi-robot systems</topic><topic>Multirobot systems</topic><topic>Reliability engineering</topic><topic>Robot sensing systems</topic><topic>Scalability</topic><topic>Simultaneous localization and mapping</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang, H.J.</creatorcontrib><creatorcontrib>Lee, C.S.G.</creatorcontrib><creatorcontrib>Hu, Y.C.</creatorcontrib><creatorcontrib>Yung-Hsiang Lu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, H.J.</au><au>Lee, C.S.G.</au><au>Hu, Y.C.</au><au>Yung-Hsiang Lu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-robot SLAM with topological/metric maps</atitle><btitle>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2007-10</date><risdate>2007</risdate><spage>1467</spage><epage>1472</epage><pages>1467-1472</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424409112</isbn><isbn>142440911X</isbn><eisbn>1424409128</eisbn><eisbn>9781424409129</eisbn><abstract>In recent years, the success of single-robot SLAM has led to more multi-robot SLAM (MR-SLAM) research. A team of robots with MR-SLAM can explore an environment more efficiently and reliably; however, MR-SLAM also raises many challenging problems, including map fusion, unknown robot poses and scalability issues. The first two problems can be considered as an optimization problem of finding a consistent joint map based on robots' relative poses and sensory data. This optimization problem exhibits a similar property of a single- robot topological/metric mapping. To exploit this property, we propose a multi-robot SLAM (MR-SLAM) algorithm, which builds a graph-like topological map with vertices representing local metric maps and edges describing relative positions of adjacent local maps. In this MR-SLAM algorithm, the map fusion between two robots can be naturally done by adding an edge that connects two topological maps, and the estimation of relative robot pose is simply performed by optimizing this edge. For the third scalable problem, the proposed algorithm is also scalable to the number of robots and the size of an environment. Computer simulations with a public data set and experimental work on Pioneer 3-DX robots have been conducted to validate the performance of the proposed MR-SLAM algorithm.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2007.4399142</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.1467-1472
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_4399142
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Computer simulation
Intelligent robots
Mobile robotics
multi-robot systems
Multirobot systems
Reliability engineering
Robot sensing systems
Scalability
Simultaneous localization and mapping
USA Councils
title Multi-robot SLAM with topological/metric maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-robot%20SLAM%20with%20topological/metric%20maps&rft.btitle=2007%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Chang,%20H.J.&rft.date=2007-10&rft.spage=1467&rft.epage=1472&rft.pages=1467-1472&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424409112&rft.isbn_list=142440911X&rft_id=info:doi/10.1109/IROS.2007.4399142&rft_dat=%3Cieee_6IE%3E4399142%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409128&rft.eisbn_list=9781424409129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4399142&rfr_iscdi=true