Decentralised data fusion with exponentials of polynomials

We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tonkes, B., Blair, A.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3732
container_issue
container_start_page 3727
container_title
container_volume
creator Tonkes, B.
Blair, A.D.
description We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.
doi_str_mv 10.1109/IROS.2007.4399072
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4399072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4399072</ieee_id><sourcerecordid>4399072</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1332-d8d085cddd0f74acec04e8f6cd0e138c0ca37a938f995ae4ed7dbfee5c010593</originalsourceid><addsrcrecordid>eNo9kNtKw0AYhNdDwbbmAcSbfYHEfw_Zg3dST4VCQXtf1t1_cSVNQhLRvr0pVq-G4RuGYQi5YlAwBvZm-bJ-LTiALqSwFjQ_ITMmuZRgGTenZMpZKXIwSp2RzGrzxxg__2elmZDZoUPZEakLkvX9BwAwrSQwPiW39-ixHjpXpR4DDW5wNH72qanpVxreKX63TT0Gkqt62kTaNtW-bnYHe0kmcRTMjjonm8eHzeI5X62flou7VZ6YEDwPJow7fAgBopbOoweJJiofAJkwHrwT2llhorWlQ4lBh7eIWHpgUFoxJ9e_tQkRt22Xdq7bb4-XiB-_gU91</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decentralised data fusion with exponentials of polynomials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tonkes, B. ; Blair, A.D.</creator><creatorcontrib>Tonkes, B. ; Blair, A.D.</creatorcontrib><description>We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424409112</identifier><identifier>ISBN: 142440911X</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1424409128</identifier><identifier>EISBN: 9781424409129</identifier><identifier>DOI: 10.1109/IROS.2007.4399072</identifier><identifier>LCCN: 2007694096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Intelligent robots ; Particle filters ; Polynomials ; Probability distribution ; Robot sensing systems ; Sensor phenomena and characterization ; Uncertainty ; USA Councils</subject><ispartof>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.3727-3732</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4399072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4399072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tonkes, B.</creatorcontrib><creatorcontrib>Blair, A.D.</creatorcontrib><title>Decentralised data fusion with exponentials of polynomials</title><title>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.</description><subject>Bayesian methods</subject><subject>Intelligent robots</subject><subject>Particle filters</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Robot sensing systems</subject><subject>Sensor phenomena and characterization</subject><subject>Uncertainty</subject><subject>USA Councils</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424409112</isbn><isbn>142440911X</isbn><isbn>1424409128</isbn><isbn>9781424409129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AYhNdDwbbmAcSbfYHEfw_Zg3dST4VCQXtf1t1_cSVNQhLRvr0pVq-G4RuGYQi5YlAwBvZm-bJ-LTiALqSwFjQ_ITMmuZRgGTenZMpZKXIwSp2RzGrzxxg__2elmZDZoUPZEakLkvX9BwAwrSQwPiW39-ixHjpXpR4DDW5wNH72qanpVxreKX63TT0Gkqt62kTaNtW-bnYHe0kmcRTMjjonm8eHzeI5X62flou7VZ6YEDwPJow7fAgBopbOoweJJiofAJkwHrwT2llhorWlQ4lBh7eIWHpgUFoxJ9e_tQkRt22Xdq7bb4-XiB-_gU91</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Tonkes, B.</creator><creator>Blair, A.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Decentralised data fusion with exponentials of polynomials</title><author>Tonkes, B. ; Blair, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1332-d8d085cddd0f74acec04e8f6cd0e138c0ca37a938f995ae4ed7dbfee5c010593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Intelligent robots</topic><topic>Particle filters</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Robot sensing systems</topic><topic>Sensor phenomena and characterization</topic><topic>Uncertainty</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Tonkes, B.</creatorcontrib><creatorcontrib>Blair, A.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tonkes, B.</au><au>Blair, A.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decentralised data fusion with exponentials of polynomials</atitle><btitle>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2007-10</date><risdate>2007</risdate><spage>3727</spage><epage>3732</epage><pages>3727-3732</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424409112</isbn><isbn>142440911X</isbn><eisbn>1424409128</eisbn><eisbn>9781424409129</eisbn><abstract>We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2007.4399072</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.3727-3732
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_4399072
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Intelligent robots
Particle filters
Polynomials
Probability distribution
Robot sensing systems
Sensor phenomena and characterization
Uncertainty
USA Councils
title Decentralised data fusion with exponentials of polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decentralised%20data%20fusion%20with%20exponentials%20of%20polynomials&rft.btitle=2007%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Tonkes,%20B.&rft.date=2007-10&rft.spage=3727&rft.epage=3732&rft.pages=3727-3732&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424409112&rft.isbn_list=142440911X&rft_id=info:doi/10.1109/IROS.2007.4399072&rft_dat=%3Cieee_6IE%3E4399072%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409128&rft.eisbn_list=9781424409129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4399072&rfr_iscdi=true