Decentralised data fusion with exponentials of polynomials
We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3732 |
---|---|
container_issue | |
container_start_page | 3727 |
container_title | |
container_volume | |
creator | Tonkes, B. Blair, A.D. |
description | We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations. |
doi_str_mv | 10.1109/IROS.2007.4399072 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4399072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4399072</ieee_id><sourcerecordid>4399072</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1332-d8d085cddd0f74acec04e8f6cd0e138c0ca37a938f995ae4ed7dbfee5c010593</originalsourceid><addsrcrecordid>eNo9kNtKw0AYhNdDwbbmAcSbfYHEfw_Zg3dST4VCQXtf1t1_cSVNQhLRvr0pVq-G4RuGYQi5YlAwBvZm-bJ-LTiALqSwFjQ_ITMmuZRgGTenZMpZKXIwSp2RzGrzxxg__2elmZDZoUPZEakLkvX9BwAwrSQwPiW39-ixHjpXpR4DDW5wNH72qanpVxreKX63TT0Gkqt62kTaNtW-bnYHe0kmcRTMjjonm8eHzeI5X62flou7VZ6YEDwPJow7fAgBopbOoweJJiofAJkwHrwT2llhorWlQ4lBh7eIWHpgUFoxJ9e_tQkRt22Xdq7bb4-XiB-_gU91</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decentralised data fusion with exponentials of polynomials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tonkes, B. ; Blair, A.D.</creator><creatorcontrib>Tonkes, B. ; Blair, A.D.</creatorcontrib><description>We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424409112</identifier><identifier>ISBN: 142440911X</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1424409128</identifier><identifier>EISBN: 9781424409129</identifier><identifier>DOI: 10.1109/IROS.2007.4399072</identifier><identifier>LCCN: 2007694096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Intelligent robots ; Particle filters ; Polynomials ; Probability distribution ; Robot sensing systems ; Sensor phenomena and characterization ; Uncertainty ; USA Councils</subject><ispartof>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.3727-3732</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4399072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4399072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tonkes, B.</creatorcontrib><creatorcontrib>Blair, A.D.</creatorcontrib><title>Decentralised data fusion with exponentials of polynomials</title><title>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.</description><subject>Bayesian methods</subject><subject>Intelligent robots</subject><subject>Particle filters</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Robot sensing systems</subject><subject>Sensor phenomena and characterization</subject><subject>Uncertainty</subject><subject>USA Councils</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424409112</isbn><isbn>142440911X</isbn><isbn>1424409128</isbn><isbn>9781424409129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AYhNdDwbbmAcSbfYHEfw_Zg3dST4VCQXtf1t1_cSVNQhLRvr0pVq-G4RuGYQi5YlAwBvZm-bJ-LTiALqSwFjQ_ITMmuZRgGTenZMpZKXIwSp2RzGrzxxg__2elmZDZoUPZEakLkvX9BwAwrSQwPiW39-ixHjpXpR4DDW5wNH72qanpVxreKX63TT0Gkqt62kTaNtW-bnYHe0kmcRTMjjonm8eHzeI5X62flou7VZ6YEDwPJow7fAgBopbOoweJJiofAJkwHrwT2llhorWlQ4lBh7eIWHpgUFoxJ9e_tQkRt22Xdq7bb4-XiB-_gU91</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Tonkes, B.</creator><creator>Blair, A.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Decentralised data fusion with exponentials of polynomials</title><author>Tonkes, B. ; Blair, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1332-d8d085cddd0f74acec04e8f6cd0e138c0ca37a938f995ae4ed7dbfee5c010593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Intelligent robots</topic><topic>Particle filters</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Robot sensing systems</topic><topic>Sensor phenomena and characterization</topic><topic>Uncertainty</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Tonkes, B.</creatorcontrib><creatorcontrib>Blair, A.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tonkes, B.</au><au>Blair, A.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decentralised data fusion with exponentials of polynomials</atitle><btitle>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2007-10</date><risdate>2007</risdate><spage>3727</spage><epage>3732</epage><pages>3727-3732</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424409112</isbn><isbn>142440911X</isbn><eisbn>1424409128</eisbn><eisbn>9781424409129</eisbn><abstract>We demonstrate applicability of a general class of multivariate probability density functions of the form e -P(x) , where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2007.4399072</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.3727-3732 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_4399072 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Intelligent robots Particle filters Polynomials Probability distribution Robot sensing systems Sensor phenomena and characterization Uncertainty USA Councils |
title | Decentralised data fusion with exponentials of polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decentralised%20data%20fusion%20with%20exponentials%20of%20polynomials&rft.btitle=2007%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Tonkes,%20B.&rft.date=2007-10&rft.spage=3727&rft.epage=3732&rft.pages=3727-3732&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424409112&rft.isbn_list=142440911X&rft_id=info:doi/10.1109/IROS.2007.4399072&rft_dat=%3Cieee_6IE%3E4399072%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409128&rft.eisbn_list=9781424409129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4399072&rfr_iscdi=true |