Robot painter: from object to trajectory
This paper presents visual perception discovered in high-level manipulator planning for a robot to reproduce the procedure involved in human painting. First, we propose a technique of 3D object segmentation that can work well even when the precision of the cameras is inadequate. Second, we apply a s...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | |
container_start_page | 339 |
container_title | |
container_volume | |
creator | Ruchanurucks, M. Kudoh, S. Ogawara, K. Shiratori, T. Ikeuchi, K. |
description | This paper presents visual perception discovered in high-level manipulator planning for a robot to reproduce the procedure involved in human painting. First, we propose a technique of 3D object segmentation that can work well even when the precision of the cameras is inadequate. Second, we apply a simple yet powerful fast color perception model that shows similarity to human perception. The method outperforms many existing interactive color perception algorithms. Third, we generate global orientation map perception using a radial basis function. Finally, we use the derived foreground, color segments, and orientation map to produce a visual feedback drawing Our main contributions are 3D object segmentation and color perception schemes. |
doi_str_mv | 10.1109/IROS.2007.4399010 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4399010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4399010</ieee_id><sourcerecordid>4399010</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f42908e6beee8fd29232435d570f65c66f042984df039a22e32325486b06871b3</originalsourceid><addsrcrecordid>eNo9kEtrwkAUhW8fQtXmB5Rusuwm6b13HpnprkgfgiBY95KYGYjUjkxm479vRNvVOfAdvsUBeCAsidA-z1fLr5IRq1IKa5HwCiYkWUq0xOYaxkxKFGi0voHMVuaPEd_-M2VGMDk5tB2QvoOs73eISJWWSDyGp1VoQsoPdfeTXHzJfQz7PDQ7t015CnmK9amGeLyHka-_e5ddcgrr97f17LNYLD_ms9dF0VlMhZds0TjdOOeMb9myYClUqyr0Wm219jgsjGw9ClszOzEMlDS6QW0qasQUHs_abjBsDrHb1_G4uRwgfgGjwUXV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robot painter: from object to trajectory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruchanurucks, M. ; Kudoh, S. ; Ogawara, K. ; Shiratori, T. ; Ikeuchi, K.</creator><creatorcontrib>Ruchanurucks, M. ; Kudoh, S. ; Ogawara, K. ; Shiratori, T. ; Ikeuchi, K.</creatorcontrib><description>This paper presents visual perception discovered in high-level manipulator planning for a robot to reproduce the procedure involved in human painting. First, we propose a technique of 3D object segmentation that can work well even when the precision of the cameras is inadequate. Second, we apply a simple yet powerful fast color perception model that shows similarity to human perception. The method outperforms many existing interactive color perception algorithms. Third, we generate global orientation map perception using a radial basis function. Finally, we use the derived foreground, color segments, and orientation map to produce a visual feedback drawing Our main contributions are 3D object segmentation and color perception schemes.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424409112</identifier><identifier>ISBN: 142440911X</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1424409128</identifier><identifier>EISBN: 9781424409129</identifier><identifier>DOI: 10.1109/IROS.2007.4399010</identifier><identifier>LCCN: 2007694096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; color perception ; Data mining ; High-level planning ; Humans ; Image segmentation ; Intelligent robots ; Object segmentation ; orientation map ; Robot sensing systems ; Trajectory ; Visual perception</subject><ispartof>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.339-345</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4399010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4399010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruchanurucks, M.</creatorcontrib><creatorcontrib>Kudoh, S.</creatorcontrib><creatorcontrib>Ogawara, K.</creatorcontrib><creatorcontrib>Shiratori, T.</creatorcontrib><creatorcontrib>Ikeuchi, K.</creatorcontrib><title>Robot painter: from object to trajectory</title><title>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper presents visual perception discovered in high-level manipulator planning for a robot to reproduce the procedure involved in human painting. First, we propose a technique of 3D object segmentation that can work well even when the precision of the cameras is inadequate. Second, we apply a simple yet powerful fast color perception model that shows similarity to human perception. The method outperforms many existing interactive color perception algorithms. Third, we generate global orientation map perception using a radial basis function. Finally, we use the derived foreground, color segments, and orientation map to produce a visual feedback drawing Our main contributions are 3D object segmentation and color perception schemes.</description><subject>Artificial intelligence</subject><subject>color perception</subject><subject>Data mining</subject><subject>High-level planning</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Intelligent robots</subject><subject>Object segmentation</subject><subject>orientation map</subject><subject>Robot sensing systems</subject><subject>Trajectory</subject><subject>Visual perception</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424409112</isbn><isbn>142440911X</isbn><isbn>1424409128</isbn><isbn>9781424409129</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtrwkAUhW8fQtXmB5Rusuwm6b13HpnprkgfgiBY95KYGYjUjkxm479vRNvVOfAdvsUBeCAsidA-z1fLr5IRq1IKa5HwCiYkWUq0xOYaxkxKFGi0voHMVuaPEd_-M2VGMDk5tB2QvoOs73eISJWWSDyGp1VoQsoPdfeTXHzJfQz7PDQ7t015CnmK9amGeLyHka-_e5ddcgrr97f17LNYLD_ms9dF0VlMhZds0TjdOOeMb9myYClUqyr0Wm219jgsjGw9ClszOzEMlDS6QW0qasQUHs_abjBsDrHb1_G4uRwgfgGjwUXV</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Ruchanurucks, M.</creator><creator>Kudoh, S.</creator><creator>Ogawara, K.</creator><creator>Shiratori, T.</creator><creator>Ikeuchi, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200710</creationdate><title>Robot painter: from object to trajectory</title><author>Ruchanurucks, M. ; Kudoh, S. ; Ogawara, K. ; Shiratori, T. ; Ikeuchi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f42908e6beee8fd29232435d570f65c66f042984df039a22e32325486b06871b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>color perception</topic><topic>Data mining</topic><topic>High-level planning</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Intelligent robots</topic><topic>Object segmentation</topic><topic>orientation map</topic><topic>Robot sensing systems</topic><topic>Trajectory</topic><topic>Visual perception</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruchanurucks, M.</creatorcontrib><creatorcontrib>Kudoh, S.</creatorcontrib><creatorcontrib>Ogawara, K.</creatorcontrib><creatorcontrib>Shiratori, T.</creatorcontrib><creatorcontrib>Ikeuchi, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruchanurucks, M.</au><au>Kudoh, S.</au><au>Ogawara, K.</au><au>Shiratori, T.</au><au>Ikeuchi, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robot painter: from object to trajectory</atitle><btitle>2007 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2007-10</date><risdate>2007</risdate><spage>339</spage><epage>345</epage><pages>339-345</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424409112</isbn><isbn>142440911X</isbn><eisbn>1424409128</eisbn><eisbn>9781424409129</eisbn><abstract>This paper presents visual perception discovered in high-level manipulator planning for a robot to reproduce the procedure involved in human painting. First, we propose a technique of 3D object segmentation that can work well even when the precision of the cameras is inadequate. Second, we apply a simple yet powerful fast color perception model that shows similarity to human perception. The method outperforms many existing interactive color perception algorithms. Third, we generate global orientation map perception using a radial basis function. Finally, we use the derived foreground, color segments, and orientation map to produce a visual feedback drawing Our main contributions are 3D object segmentation and color perception schemes.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2007.4399010</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, p.339-345 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_4399010 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence color perception Data mining High-level planning Humans Image segmentation Intelligent robots Object segmentation orientation map Robot sensing systems Trajectory Visual perception |
title | Robot painter: from object to trajectory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robot%20painter:%20from%20object%20to%20trajectory&rft.btitle=2007%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Ruchanurucks,%20M.&rft.date=2007-10&rft.spage=339&rft.epage=345&rft.pages=339-345&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424409112&rft.isbn_list=142440911X&rft_id=info:doi/10.1109/IROS.2007.4399010&rft_dat=%3Cieee_6IE%3E4399010%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409128&rft.eisbn_list=9781424409129&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4399010&rfr_iscdi=true |