Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification
In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal sta...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 107 |
container_title | |
container_volume | |
creator | Ataee, P. Yazdani, A. Setarehdan, S.K. Noubari, H.A. |
description | In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained. |
doi_str_mv | 10.1109/ISPA.2007.4383673 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4383673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4383673</ieee_id><sourcerecordid>4383673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8297468ab634c14b225e6d4e98ad8d551b7a6b54da42cd3d590fcb05e6f5fb633</originalsourceid><addsrcrecordid>eNo1UMtKAzEUDahgrf0AcZMfmJrnzGRZq62FooUqLksmuWkj85AkInXlpzvVejf3wnncw0HoipIxpUTdLNaryZgRUowFL3le8BN0oSSnpaA0J6do0F8yk4rRczSK8Y30w5VQhA3Q9xxaSN7gSb3tgk-7Brsu4DXUYJLvWtw5fAsx4Rno9BEA69biV9_a7hMvod2m3S9f4zsfTfCNb3UCvAqQRfBf_4LHLjS6xut0AKe1jtE7b_ThwSU6c7qOMDruIXqZ3T9PH7Ll03wxnSwzTwuZspKpQuSlrnIuDBUVYxJyK0CV2pZWSloVOq-ksFowY7mVijhTkZ7kpOtFfIiu_3w9AGze-6g67DfHwvgP8bFgwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</creator><creatorcontrib>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</creatorcontrib><description>In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.</description><identifier>ISSN: 1845-5921</identifier><identifier>ISBN: 9531841160</identifier><identifier>ISBN: 9789531841160</identifier><identifier>DOI: 10.1109/ISPA.2007.4383673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Electroencephalography ; Electronic mail ; Epilepsy ; Feature extraction ; Genetic algorithms ; Genetic engineering ; Pattern recognition ; Signal design ; Spatial databases</subject><ispartof>2007 5th International Symposium on Image and Signal Processing and Analysis, 2007, p.107-112</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4383673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4383673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Noubari, H.A.</creatorcontrib><title>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</title><title>2007 5th International Symposium on Image and Signal Processing and Analysis</title><addtitle>ISPA</addtitle><description>In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.</description><subject>Data mining</subject><subject>Electroencephalography</subject><subject>Electronic mail</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Pattern recognition</subject><subject>Signal design</subject><subject>Spatial databases</subject><issn>1845-5921</issn><isbn>9531841160</isbn><isbn>9789531841160</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtKAzEUDahgrf0AcZMfmJrnzGRZq62FooUqLksmuWkj85AkInXlpzvVejf3wnncw0HoipIxpUTdLNaryZgRUowFL3le8BN0oSSnpaA0J6do0F8yk4rRczSK8Y30w5VQhA3Q9xxaSN7gSb3tgk-7Brsu4DXUYJLvWtw5fAsx4Rno9BEA69biV9_a7hMvod2m3S9f4zsfTfCNb3UCvAqQRfBf_4LHLjS6xut0AKe1jtE7b_ThwSU6c7qOMDruIXqZ3T9PH7Ll03wxnSwzTwuZspKpQuSlrnIuDBUVYxJyK0CV2pZWSloVOq-ksFowY7mVijhTkZ7kpOtFfIiu_3w9AGze-6g67DfHwvgP8bFgwg</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Ataee, P.</creator><creator>Yazdani, A.</creator><creator>Setarehdan, S.K.</creator><creator>Noubari, H.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</title><author>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8297468ab634c14b225e6d4e98ad8d551b7a6b54da42cd3d590fcb05e6f5fb633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data mining</topic><topic>Electroencephalography</topic><topic>Electronic mail</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Pattern recognition</topic><topic>Signal design</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Noubari, H.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ataee, P.</au><au>Yazdani, A.</au><au>Setarehdan, S.K.</au><au>Noubari, H.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</atitle><btitle>2007 5th International Symposium on Image and Signal Processing and Analysis</btitle><stitle>ISPA</stitle><date>2007-09</date><risdate>2007</risdate><spage>107</spage><epage>112</epage><pages>107-112</pages><issn>1845-5921</issn><isbn>9531841160</isbn><isbn>9789531841160</isbn><abstract>In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.</abstract><pub>IEEE</pub><doi>10.1109/ISPA.2007.4383673</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1845-5921 |
ispartof | 2007 5th International Symposium on Image and Signal Processing and Analysis, 2007, p.107-112 |
issn | 1845-5921 |
language | eng |
recordid | cdi_ieee_primary_4383673 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Electroencephalography Electronic mail Epilepsy Feature extraction Genetic algorithms Genetic engineering Pattern recognition Signal design Spatial databases |
title | Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20Algorithm%20for%20Selection%20of%20Best%20Feature%20and%20Window%20Length%20for%20a%20Discriminate%20Pre-seizure%20and%20Normal%20State%20Classification&rft.btitle=2007%205th%20International%20Symposium%20on%20Image%20and%20Signal%20Processing%20and%20Analysis&rft.au=Ataee,%20P.&rft.date=2007-09&rft.spage=107&rft.epage=112&rft.pages=107-112&rft.issn=1845-5921&rft.isbn=9531841160&rft.isbn_list=9789531841160&rft_id=info:doi/10.1109/ISPA.2007.4383673&rft_dat=%3Cieee_6IE%3E4383673%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4383673&rfr_iscdi=true |