Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification

In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ataee, P., Yazdani, A., Setarehdan, S.K., Noubari, H.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 107
container_title
container_volume
creator Ataee, P.
Yazdani, A.
Setarehdan, S.K.
Noubari, H.A.
description In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.
doi_str_mv 10.1109/ISPA.2007.4383673
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4383673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4383673</ieee_id><sourcerecordid>4383673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8297468ab634c14b225e6d4e98ad8d551b7a6b54da42cd3d590fcb05e6f5fb633</originalsourceid><addsrcrecordid>eNo1UMtKAzEUDahgrf0AcZMfmJrnzGRZq62FooUqLksmuWkj85AkInXlpzvVejf3wnncw0HoipIxpUTdLNaryZgRUowFL3le8BN0oSSnpaA0J6do0F8yk4rRczSK8Y30w5VQhA3Q9xxaSN7gSb3tgk-7Brsu4DXUYJLvWtw5fAsx4Rno9BEA69biV9_a7hMvod2m3S9f4zsfTfCNb3UCvAqQRfBf_4LHLjS6xut0AKe1jtE7b_ThwSU6c7qOMDruIXqZ3T9PH7Ll03wxnSwzTwuZspKpQuSlrnIuDBUVYxJyK0CV2pZWSloVOq-ksFowY7mVijhTkZ7kpOtFfIiu_3w9AGze-6g67DfHwvgP8bFgwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</creator><creatorcontrib>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</creatorcontrib><description>In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.</description><identifier>ISSN: 1845-5921</identifier><identifier>ISBN: 9531841160</identifier><identifier>ISBN: 9789531841160</identifier><identifier>DOI: 10.1109/ISPA.2007.4383673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Electroencephalography ; Electronic mail ; Epilepsy ; Feature extraction ; Genetic algorithms ; Genetic engineering ; Pattern recognition ; Signal design ; Spatial databases</subject><ispartof>2007 5th International Symposium on Image and Signal Processing and Analysis, 2007, p.107-112</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4383673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4383673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Noubari, H.A.</creatorcontrib><title>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</title><title>2007 5th International Symposium on Image and Signal Processing and Analysis</title><addtitle>ISPA</addtitle><description>In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.</description><subject>Data mining</subject><subject>Electroencephalography</subject><subject>Electronic mail</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Pattern recognition</subject><subject>Signal design</subject><subject>Spatial databases</subject><issn>1845-5921</issn><isbn>9531841160</isbn><isbn>9789531841160</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtKAzEUDahgrf0AcZMfmJrnzGRZq62FooUqLksmuWkj85AkInXlpzvVejf3wnncw0HoipIxpUTdLNaryZgRUowFL3le8BN0oSSnpaA0J6do0F8yk4rRczSK8Y30w5VQhA3Q9xxaSN7gSb3tgk-7Brsu4DXUYJLvWtw5fAsx4Rno9BEA69biV9_a7hMvod2m3S9f4zsfTfCNb3UCvAqQRfBf_4LHLjS6xut0AKe1jtE7b_ThwSU6c7qOMDruIXqZ3T9PH7Ll03wxnSwzTwuZspKpQuSlrnIuDBUVYxJyK0CV2pZWSloVOq-ksFowY7mVijhTkZ7kpOtFfIiu_3w9AGze-6g67DfHwvgP8bFgwg</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Ataee, P.</creator><creator>Yazdani, A.</creator><creator>Setarehdan, S.K.</creator><creator>Noubari, H.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</title><author>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8297468ab634c14b225e6d4e98ad8d551b7a6b54da42cd3d590fcb05e6f5fb633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data mining</topic><topic>Electroencephalography</topic><topic>Electronic mail</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Pattern recognition</topic><topic>Signal design</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Noubari, H.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ataee, P.</au><au>Yazdani, A.</au><au>Setarehdan, S.K.</au><au>Noubari, H.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification</atitle><btitle>2007 5th International Symposium on Image and Signal Processing and Analysis</btitle><stitle>ISPA</stitle><date>2007-09</date><risdate>2007</risdate><spage>107</spage><epage>112</epage><pages>107-112</pages><issn>1845-5921</issn><isbn>9531841160</isbn><isbn>9789531841160</isbn><abstract>In the EEG based seizure prediction system, feature extraction and feature selection procedures which distinguish various states of the EEG signal are the main parts of the mentioned system. In the meantime, selection of appropriate window length for well discrimination of pre-seizure and normal states of the EEG signal is extremely significant. In this paper, a genetic algorithm based method was proposed for improving some dominant feature extraction parameters such as feature vector and its related window length. In this study, an appropriate representation of problem and fitness function for enhancing the described problem is selected. Eventually, we indicate that by applying these improved parameters, more discriminated classes -pre-seizure and normal classes -are obtained.</abstract><pub>IEEE</pub><doi>10.1109/ISPA.2007.4383673</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1845-5921
ispartof 2007 5th International Symposium on Image and Signal Processing and Analysis, 2007, p.107-112
issn 1845-5921
language eng
recordid cdi_ieee_primary_4383673
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Electroencephalography
Electronic mail
Epilepsy
Feature extraction
Genetic algorithms
Genetic engineering
Pattern recognition
Signal design
Spatial databases
title Genetic Algorithm for Selection of Best Feature and Window Length for a Discriminate Pre-seizure and Normal State Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20Algorithm%20for%20Selection%20of%20Best%20Feature%20and%20Window%20Length%20for%20a%20Discriminate%20Pre-seizure%20and%20Normal%20State%20Classification&rft.btitle=2007%205th%20International%20Symposium%20on%20Image%20and%20Signal%20Processing%20and%20Analysis&rft.au=Ataee,%20P.&rft.date=2007-09&rft.spage=107&rft.epage=112&rft.pages=107-112&rft.issn=1845-5921&rft.isbn=9531841160&rft.isbn_list=9789531841160&rft_id=info:doi/10.1109/ISPA.2007.4383673&rft_dat=%3Cieee_6IE%3E4383673%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4383673&rfr_iscdi=true