Neural, Fuzzy And Neurofuzzy Approach To Classification Of Normal And Alcoholic Electroencephalograms

According to the literature, many psychiatric phenotypes, brain disorders and/or mental tasks can be detected by analyzing EEG signals. One such a psychiatric phenotype is alcoholism. In this paper the parameters of second order autoregressive model, peak amplitude of the power spectrum, mean of abs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yazdani, A., Ataee, P., Setarehdan, S.K., Araabi, B.N., Lucas, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue
container_start_page 102
container_title
container_volume
creator Yazdani, A.
Ataee, P.
Setarehdan, S.K.
Araabi, B.N.
Lucas, C.
description According to the literature, many psychiatric phenotypes, brain disorders and/or mental tasks can be detected by analyzing EEG signals. One such a psychiatric phenotype is alcoholism. In this paper the parameters of second order autoregressive model, peak amplitude of the power spectrum, mean of absolute value and the variance of the signal are extracted as features of the signal. The dimension of the feature vector is then reduced by means of PCA. Next a method based on fuzzy inference system as a fuzzy approach in classification is investigated. In this method first the data in each class is divided into two clusters separately and a Gaussian membership function is defined for each cluster. Classification is performed by means of if-then rules generated in the previous step. Then an adaptive neurofuzzy inference system is used for classification. Due to the ability of the neurofuzzy inference system to be trained higher classification accuracy is achieved. Finally with the use of a multilayer perceptron structure it is shown that an accuracy of 100% can be achieved for separating the two classes.
doi_str_mv 10.1109/ISPA.2007.4383672
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4383672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4383672</ieee_id><sourcerecordid>4383672</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5e4aa715c70af68215d863928729f192d509ba9ae0761dc48a9b57340ef917db3</originalsourceid><addsrcrecordid>eNotUM1OAjEYbKImIvIAxksfwMV-7Xa7PW4IKAkBE_FMvu22bk2hmy4c4OlFYS7zk8wchpAnYGMApl_nnx_VmDOmxrkoRaH4DXnQUkCZAxTslgzOSmZSc7gno77_YWcInWvGB8Qu7SFheKGzw-l0pNWuoX9JdBfbdSmiaek60knAvvfOG9z7uKMrR5cxbTH8d6pgYhuDN3QarNmnaHfGdi2G-J1w2z-SO4eht6MrD8nXbLqevGeL1dt8Ui0yD0ruM2lzRAXSKIauKDnIpiyE5qXi2oHmjWS6Ro2WqQIak5eoa6lEzqzToJpaDMnzZddbazdd8ltMx831FfELBulWiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural, Fuzzy And Neurofuzzy Approach To Classification Of Normal And Alcoholic Electroencephalograms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yazdani, A. ; Ataee, P. ; Setarehdan, S.K. ; Araabi, B.N. ; Lucas, C.</creator><creatorcontrib>Yazdani, A. ; Ataee, P. ; Setarehdan, S.K. ; Araabi, B.N. ; Lucas, C.</creatorcontrib><description>According to the literature, many psychiatric phenotypes, brain disorders and/or mental tasks can be detected by analyzing EEG signals. One such a psychiatric phenotype is alcoholism. In this paper the parameters of second order autoregressive model, peak amplitude of the power spectrum, mean of absolute value and the variance of the signal are extracted as features of the signal. The dimension of the feature vector is then reduced by means of PCA. Next a method based on fuzzy inference system as a fuzzy approach in classification is investigated. In this method first the data in each class is divided into two clusters separately and a Gaussian membership function is defined for each cluster. Classification is performed by means of if-then rules generated in the previous step. Then an adaptive neurofuzzy inference system is used for classification. Due to the ability of the neurofuzzy inference system to be trained higher classification accuracy is achieved. Finally with the use of a multilayer perceptron structure it is shown that an accuracy of 100% can be achieved for separating the two classes.</description><identifier>ISSN: 1845-5921</identifier><identifier>ISBN: 9531841160</identifier><identifier>ISBN: 9789531841160</identifier><identifier>DOI: 10.1109/ISPA.2007.4383672</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alcoholism ; Brain modeling ; Data mining ; Electroencephalography ; Feature extraction ; Fuzzy systems ; Power system modeling ; Principal component analysis ; Psychology ; Signal analysis</subject><ispartof>2007 5th International Symposium on Image and Signal Processing and Analysis, 2007, p.102-106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4383672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4383672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Araabi, B.N.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><title>Neural, Fuzzy And Neurofuzzy Approach To Classification Of Normal And Alcoholic Electroencephalograms</title><title>2007 5th International Symposium on Image and Signal Processing and Analysis</title><addtitle>ISPA</addtitle><description>According to the literature, many psychiatric phenotypes, brain disorders and/or mental tasks can be detected by analyzing EEG signals. One such a psychiatric phenotype is alcoholism. In this paper the parameters of second order autoregressive model, peak amplitude of the power spectrum, mean of absolute value and the variance of the signal are extracted as features of the signal. The dimension of the feature vector is then reduced by means of PCA. Next a method based on fuzzy inference system as a fuzzy approach in classification is investigated. In this method first the data in each class is divided into two clusters separately and a Gaussian membership function is defined for each cluster. Classification is performed by means of if-then rules generated in the previous step. Then an adaptive neurofuzzy inference system is used for classification. Due to the ability of the neurofuzzy inference system to be trained higher classification accuracy is achieved. Finally with the use of a multilayer perceptron structure it is shown that an accuracy of 100% can be achieved for separating the two classes.</description><subject>Alcoholism</subject><subject>Brain modeling</subject><subject>Data mining</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Fuzzy systems</subject><subject>Power system modeling</subject><subject>Principal component analysis</subject><subject>Psychology</subject><subject>Signal analysis</subject><issn>1845-5921</issn><isbn>9531841160</isbn><isbn>9789531841160</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1OAjEYbKImIvIAxksfwMV-7Xa7PW4IKAkBE_FMvu22bk2hmy4c4OlFYS7zk8wchpAnYGMApl_nnx_VmDOmxrkoRaH4DXnQUkCZAxTslgzOSmZSc7gno77_YWcInWvGB8Qu7SFheKGzw-l0pNWuoX9JdBfbdSmiaek60knAvvfOG9z7uKMrR5cxbTH8d6pgYhuDN3QarNmnaHfGdi2G-J1w2z-SO4eht6MrD8nXbLqevGeL1dt8Ui0yD0ruM2lzRAXSKIauKDnIpiyE5qXi2oHmjWS6Ro2WqQIak5eoa6lEzqzToJpaDMnzZddbazdd8ltMx831FfELBulWiQ</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Yazdani, A.</creator><creator>Ataee, P.</creator><creator>Setarehdan, S.K.</creator><creator>Araabi, B.N.</creator><creator>Lucas, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Neural, Fuzzy And Neurofuzzy Approach To Classification Of Normal And Alcoholic Electroencephalograms</title><author>Yazdani, A. ; Ataee, P. ; Setarehdan, S.K. ; Araabi, B.N. ; Lucas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5e4aa715c70af68215d863928729f192d509ba9ae0761dc48a9b57340ef917db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alcoholism</topic><topic>Brain modeling</topic><topic>Data mining</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Fuzzy systems</topic><topic>Power system modeling</topic><topic>Principal component analysis</topic><topic>Psychology</topic><topic>Signal analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Araabi, B.N.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yazdani, A.</au><au>Ataee, P.</au><au>Setarehdan, S.K.</au><au>Araabi, B.N.</au><au>Lucas, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural, Fuzzy And Neurofuzzy Approach To Classification Of Normal And Alcoholic Electroencephalograms</atitle><btitle>2007 5th International Symposium on Image and Signal Processing and Analysis</btitle><stitle>ISPA</stitle><date>2007-09</date><risdate>2007</risdate><spage>102</spage><epage>106</epage><pages>102-106</pages><issn>1845-5921</issn><isbn>9531841160</isbn><isbn>9789531841160</isbn><abstract>According to the literature, many psychiatric phenotypes, brain disorders and/or mental tasks can be detected by analyzing EEG signals. One such a psychiatric phenotype is alcoholism. In this paper the parameters of second order autoregressive model, peak amplitude of the power spectrum, mean of absolute value and the variance of the signal are extracted as features of the signal. The dimension of the feature vector is then reduced by means of PCA. Next a method based on fuzzy inference system as a fuzzy approach in classification is investigated. In this method first the data in each class is divided into two clusters separately and a Gaussian membership function is defined for each cluster. Classification is performed by means of if-then rules generated in the previous step. Then an adaptive neurofuzzy inference system is used for classification. Due to the ability of the neurofuzzy inference system to be trained higher classification accuracy is achieved. Finally with the use of a multilayer perceptron structure it is shown that an accuracy of 100% can be achieved for separating the two classes.</abstract><pub>IEEE</pub><doi>10.1109/ISPA.2007.4383672</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1845-5921
ispartof 2007 5th International Symposium on Image and Signal Processing and Analysis, 2007, p.102-106
issn 1845-5921
language eng
recordid cdi_ieee_primary_4383672
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Alcoholism
Brain modeling
Data mining
Electroencephalography
Feature extraction
Fuzzy systems
Power system modeling
Principal component analysis
Psychology
Signal analysis
title Neural, Fuzzy And Neurofuzzy Approach To Classification Of Normal And Alcoholic Electroencephalograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural,%20Fuzzy%20And%20Neurofuzzy%20Approach%20To%20Classification%20Of%20Normal%20And%20Alcoholic%20Electroencephalograms&rft.btitle=2007%205th%20International%20Symposium%20on%20Image%20and%20Signal%20Processing%20and%20Analysis&rft.au=Yazdani,%20A.&rft.date=2007-09&rft.spage=102&rft.epage=106&rft.pages=102-106&rft.issn=1845-5921&rft.isbn=9531841160&rft.isbn_list=9789531841160&rft_id=info:doi/10.1109/ISPA.2007.4383672&rft_dat=%3Cieee_6IE%3E4383672%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4383672&rfr_iscdi=true