Image Quality Measure using Curvature Similarity

This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Susu Yao, Lin, W., Lu, Z.K., Ong, E.P., Locke, M.H., Wu, S.Q.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page III - 440
container_issue
container_start_page III - 437
container_title
container_volume 3
creator Susu Yao
Lin, W.
Lu, Z.K.
Ong, E.P.
Locke, M.H.
Wu, S.Q.
description This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.
doi_str_mv 10.1109/ICIP.2007.4379340
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4379340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4379340</ieee_id><sourcerecordid>4379340</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2e714056d4c885f972e07440576ab7437d3ca9133b2e090042f907355051b5673</originalsourceid><addsrcrecordid>eNpVj8tqwzAURNUX1KT-gNKNf0Du1fNKy2L6MKQ0odkHOZGDil2KZBfy91VpNl1dZs4w3CHklkHNGNj7tmlXNQfAWgq0QsIZKS0aJrmULFv6nBRcGEaNkvbiH9P2khRMcU6lMXBNypQ-AIChzhQKAu3oDr5az24I07F69S7N0VdzCp-Hqpnjt5t-9XsYw-BijtyQq94NyZenuyCbp8dN80KXb89t87CkwcJEucdcr_Re7oxRvUXuAWV2ULsO88t7sXOWCdFlYAEk7y2gUAoU65RGsSB3f7XBe7_9imF08bg9zRc_feVGxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Quality Measure using Curvature Similarity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Susu Yao ; Lin, W. ; Lu, Z.K. ; Ong, E.P. ; Locke, M.H. ; Wu, S.Q.</creator><creatorcontrib>Susu Yao ; Lin, W. ; Lu, Z.K. ; Ong, E.P. ; Locke, M.H. ; Wu, S.Q.</creatorcontrib><description>This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424414369</identifier><identifier>ISBN: 1424414369</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424414376</identifier><identifier>EISBN: 1424414377</identifier><identifier>DOI: 10.1109/ICIP.2007.4379340</identifier><language>eng</language><publisher>IEEE</publisher><subject>correlation ; Degradation ; Distortion measurement ; error visibility ; Eyes ; Frequency ; Humans ; Image processing ; Image quality ; Image quality assessment ; surface curvature ; Surface texture ; Wavelet coefficients ; wavelet transform ; Wavelet transforms</subject><ispartof>2007 IEEE International Conference on Image Processing, 2007, Vol.3, p.III - 437-III - 440</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4379340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4379340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Susu Yao</creatorcontrib><creatorcontrib>Lin, W.</creatorcontrib><creatorcontrib>Lu, Z.K.</creatorcontrib><creatorcontrib>Ong, E.P.</creatorcontrib><creatorcontrib>Locke, M.H.</creatorcontrib><creatorcontrib>Wu, S.Q.</creatorcontrib><title>Image Quality Measure using Curvature Similarity</title><title>2007 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.</description><subject>correlation</subject><subject>Degradation</subject><subject>Distortion measurement</subject><subject>error visibility</subject><subject>Eyes</subject><subject>Frequency</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image quality assessment</subject><subject>surface curvature</subject><subject>Surface texture</subject><subject>Wavelet coefficients</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424414369</isbn><isbn>1424414369</isbn><isbn>9781424414376</isbn><isbn>1424414377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tqwzAURNUX1KT-gNKNf0Du1fNKy2L6MKQ0odkHOZGDil2KZBfy91VpNl1dZs4w3CHklkHNGNj7tmlXNQfAWgq0QsIZKS0aJrmULFv6nBRcGEaNkvbiH9P2khRMcU6lMXBNypQ-AIChzhQKAu3oDr5az24I07F69S7N0VdzCp-Hqpnjt5t-9XsYw-BijtyQq94NyZenuyCbp8dN80KXb89t87CkwcJEucdcr_Re7oxRvUXuAWV2ULsO88t7sXOWCdFlYAEk7y2gUAoU65RGsSB3f7XBe7_9imF08bg9zRc_feVGxQ</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Susu Yao</creator><creator>Lin, W.</creator><creator>Lu, Z.K.</creator><creator>Ong, E.P.</creator><creator>Locke, M.H.</creator><creator>Wu, S.Q.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Image Quality Measure using Curvature Similarity</title><author>Susu Yao ; Lin, W. ; Lu, Z.K. ; Ong, E.P. ; Locke, M.H. ; Wu, S.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2e714056d4c885f972e07440576ab7437d3ca9133b2e090042f907355051b5673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>correlation</topic><topic>Degradation</topic><topic>Distortion measurement</topic><topic>error visibility</topic><topic>Eyes</topic><topic>Frequency</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image quality assessment</topic><topic>surface curvature</topic><topic>Surface texture</topic><topic>Wavelet coefficients</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Susu Yao</creatorcontrib><creatorcontrib>Lin, W.</creatorcontrib><creatorcontrib>Lu, Z.K.</creatorcontrib><creatorcontrib>Ong, E.P.</creatorcontrib><creatorcontrib>Locke, M.H.</creatorcontrib><creatorcontrib>Wu, S.Q.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Susu Yao</au><au>Lin, W.</au><au>Lu, Z.K.</au><au>Ong, E.P.</au><au>Locke, M.H.</au><au>Wu, S.Q.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Quality Measure using Curvature Similarity</atitle><btitle>2007 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2007-09</date><risdate>2007</risdate><volume>3</volume><spage>III - 437</spage><epage>III - 440</epage><pages>III - 437-III - 440</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424414369</isbn><isbn>1424414369</isbn><eisbn>9781424414376</eisbn><eisbn>1424414377</eisbn><abstract>This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2007.4379340</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2007 IEEE International Conference on Image Processing, 2007, Vol.3, p.III - 437-III - 440
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4379340
source IEEE Electronic Library (IEL) Conference Proceedings
subjects correlation
Degradation
Distortion measurement
error visibility
Eyes
Frequency
Humans
Image processing
Image quality
Image quality assessment
surface curvature
Surface texture
Wavelet coefficients
wavelet transform
Wavelet transforms
title Image Quality Measure using Curvature Similarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Quality%20Measure%20using%20Curvature%20Similarity&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Susu%20Yao&rft.date=2007-09&rft.volume=3&rft.spage=III%20-%20437&rft.epage=III%20-%20440&rft.pages=III%20-%20437-III%20-%20440&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424414369&rft.isbn_list=1424414369&rft_id=info:doi/10.1109/ICIP.2007.4379340&rft_dat=%3Cieee_6IE%3E4379340%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424414376&rft.eisbn_list=1424414377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4379340&rfr_iscdi=true