Image Quality Measure using Curvature Similarity
This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give over...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | III - 440 |
---|---|
container_issue | |
container_start_page | III - 437 |
container_title | |
container_volume | 3 |
creator | Susu Yao Lin, W. Lu, Z.K. Ong, E.P. Locke, M.H. Wu, S.Q. |
description | This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric. |
doi_str_mv | 10.1109/ICIP.2007.4379340 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4379340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4379340</ieee_id><sourcerecordid>4379340</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2e714056d4c885f972e07440576ab7437d3ca9133b2e090042f907355051b5673</originalsourceid><addsrcrecordid>eNpVj8tqwzAURNUX1KT-gNKNf0Du1fNKy2L6MKQ0odkHOZGDil2KZBfy91VpNl1dZs4w3CHklkHNGNj7tmlXNQfAWgq0QsIZKS0aJrmULFv6nBRcGEaNkvbiH9P2khRMcU6lMXBNypQ-AIChzhQKAu3oDr5az24I07F69S7N0VdzCp-Hqpnjt5t-9XsYw-BijtyQq94NyZenuyCbp8dN80KXb89t87CkwcJEucdcr_Re7oxRvUXuAWV2ULsO88t7sXOWCdFlYAEk7y2gUAoU65RGsSB3f7XBe7_9imF08bg9zRc_feVGxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Quality Measure using Curvature Similarity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Susu Yao ; Lin, W. ; Lu, Z.K. ; Ong, E.P. ; Locke, M.H. ; Wu, S.Q.</creator><creatorcontrib>Susu Yao ; Lin, W. ; Lu, Z.K. ; Ong, E.P. ; Locke, M.H. ; Wu, S.Q.</creatorcontrib><description>This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424414369</identifier><identifier>ISBN: 1424414369</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424414376</identifier><identifier>EISBN: 1424414377</identifier><identifier>DOI: 10.1109/ICIP.2007.4379340</identifier><language>eng</language><publisher>IEEE</publisher><subject>correlation ; Degradation ; Distortion measurement ; error visibility ; Eyes ; Frequency ; Humans ; Image processing ; Image quality ; Image quality assessment ; surface curvature ; Surface texture ; Wavelet coefficients ; wavelet transform ; Wavelet transforms</subject><ispartof>2007 IEEE International Conference on Image Processing, 2007, Vol.3, p.III - 437-III - 440</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4379340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4379340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Susu Yao</creatorcontrib><creatorcontrib>Lin, W.</creatorcontrib><creatorcontrib>Lu, Z.K.</creatorcontrib><creatorcontrib>Ong, E.P.</creatorcontrib><creatorcontrib>Locke, M.H.</creatorcontrib><creatorcontrib>Wu, S.Q.</creatorcontrib><title>Image Quality Measure using Curvature Similarity</title><title>2007 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.</description><subject>correlation</subject><subject>Degradation</subject><subject>Distortion measurement</subject><subject>error visibility</subject><subject>Eyes</subject><subject>Frequency</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image quality assessment</subject><subject>surface curvature</subject><subject>Surface texture</subject><subject>Wavelet coefficients</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424414369</isbn><isbn>1424414369</isbn><isbn>9781424414376</isbn><isbn>1424414377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tqwzAURNUX1KT-gNKNf0Du1fNKy2L6MKQ0odkHOZGDil2KZBfy91VpNl1dZs4w3CHklkHNGNj7tmlXNQfAWgq0QsIZKS0aJrmULFv6nBRcGEaNkvbiH9P2khRMcU6lMXBNypQ-AIChzhQKAu3oDr5az24I07F69S7N0VdzCp-Hqpnjt5t-9XsYw-BijtyQq94NyZenuyCbp8dN80KXb89t87CkwcJEucdcr_Re7oxRvUXuAWV2ULsO88t7sXOWCdFlYAEk7y2gUAoU65RGsSB3f7XBe7_9imF08bg9zRc_feVGxQ</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Susu Yao</creator><creator>Lin, W.</creator><creator>Lu, Z.K.</creator><creator>Ong, E.P.</creator><creator>Locke, M.H.</creator><creator>Wu, S.Q.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Image Quality Measure using Curvature Similarity</title><author>Susu Yao ; Lin, W. ; Lu, Z.K. ; Ong, E.P. ; Locke, M.H. ; Wu, S.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2e714056d4c885f972e07440576ab7437d3ca9133b2e090042f907355051b5673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>correlation</topic><topic>Degradation</topic><topic>Distortion measurement</topic><topic>error visibility</topic><topic>Eyes</topic><topic>Frequency</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image quality assessment</topic><topic>surface curvature</topic><topic>Surface texture</topic><topic>Wavelet coefficients</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Susu Yao</creatorcontrib><creatorcontrib>Lin, W.</creatorcontrib><creatorcontrib>Lu, Z.K.</creatorcontrib><creatorcontrib>Ong, E.P.</creatorcontrib><creatorcontrib>Locke, M.H.</creatorcontrib><creatorcontrib>Wu, S.Q.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Susu Yao</au><au>Lin, W.</au><au>Lu, Z.K.</au><au>Ong, E.P.</au><au>Locke, M.H.</au><au>Wu, S.Q.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Quality Measure using Curvature Similarity</atitle><btitle>2007 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2007-09</date><risdate>2007</risdate><volume>3</volume><spage>III - 437</spage><epage>III - 440</epage><pages>III - 437-III - 440</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424414369</isbn><isbn>1424414369</isbn><eisbn>9781424414376</eisbn><eisbn>1424414377</eisbn><abstract>This paper proposes a new full-reference objective metric for image quality assessment. The reference and distorted images are decomposed into a number of wavelet subbands, in which mean curvatures and perceived error of the wavelet coefficients of two images are computed and integrated to give overall quality index. Taking structural similarity and error visibility into account, the new method can achieve high consistency with subjective evaluation compared with other metrics. Experimental results have shown the effectiveness of the proposed metric.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2007.4379340</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2007 IEEE International Conference on Image Processing, 2007, Vol.3, p.III - 437-III - 440 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_4379340 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | correlation Degradation Distortion measurement error visibility Eyes Frequency Humans Image processing Image quality Image quality assessment surface curvature Surface texture Wavelet coefficients wavelet transform Wavelet transforms |
title | Image Quality Measure using Curvature Similarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Quality%20Measure%20using%20Curvature%20Similarity&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Susu%20Yao&rft.date=2007-09&rft.volume=3&rft.spage=III%20-%20437&rft.epage=III%20-%20440&rft.pages=III%20-%20437-III%20-%20440&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424414369&rft.isbn_list=1424414369&rft_id=info:doi/10.1109/ICIP.2007.4379340&rft_dat=%3Cieee_6IE%3E4379340%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424414376&rft.eisbn_list=1424414377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4379340&rfr_iscdi=true |